File size: 5,223 Bytes
cb265a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import matplotlib.pyplot as plt

import numpy as np

import torch

from lib.exceptions import EmptyTensorError


def preprocess_image(image, preprocessing=None):
    image = image.astype(np.float32)
    image = np.transpose(image, [2, 0, 1])
    if preprocessing is None:
        pass
    elif preprocessing == 'caffe':
        # RGB -> BGR
        image = image[:: -1, :, :]
        # Zero-center by mean pixel
        mean = np.array([103.939, 116.779, 123.68])
        image = image - mean.reshape([3, 1, 1])
    elif preprocessing == 'torch':
        image /= 255.0
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        image = (image - mean.reshape([3, 1, 1])) / std.reshape([3, 1, 1])
    else:
        raise ValueError('Unknown preprocessing parameter.')
    return image


def imshow_image(image, preprocessing=None):
    if preprocessing is None:
        pass
    elif preprocessing == 'caffe':
        mean = np.array([103.939, 116.779, 123.68])
        image = image + mean.reshape([3, 1, 1])
        # RGB -> BGR
        image = image[:: -1, :, :]
    elif preprocessing == 'torch':
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        image = image * std.reshape([3, 1, 1]) + mean.reshape([3, 1, 1])
        image *= 255.0
    else:
        raise ValueError('Unknown preprocessing parameter.')
    image = np.transpose(image, [1, 2, 0])
    image = np.round(image).astype(np.uint8)
    return image


def grid_positions(h, w, device, matrix=False):
    lines = torch.arange(
        0, h, device=device
    ).view(-1, 1).float().repeat(1, w)
    columns = torch.arange(
        0, w, device=device
    ).view(1, -1).float().repeat(h, 1)
    if matrix:
        return torch.stack([lines, columns], dim=0)
    else:
        return torch.cat([lines.view(1, -1), columns.view(1, -1)], dim=0)


def upscale_positions(pos, scaling_steps=0):
    for _ in range(scaling_steps):
        pos = pos * 2 + 0.5
    return pos


def downscale_positions(pos, scaling_steps=0):
    for _ in range(scaling_steps):
        pos = (pos - 0.5) / 2
    return pos


def interpolate_dense_features(pos, dense_features, return_corners=False):
    device = pos.device

    ids = torch.arange(0, pos.size(1), device=device)

    _, h, w = dense_features.size()

    i = pos[0, :]
    j = pos[1, :]

    # Valid corners
    i_top_left = torch.floor(i).long()
    j_top_left = torch.floor(j).long()
    valid_top_left = torch.min(i_top_left >= 0, j_top_left >= 0)

    i_top_right = torch.floor(i).long()
    j_top_right = torch.ceil(j).long()
    valid_top_right = torch.min(i_top_right >= 0, j_top_right < w)

    i_bottom_left = torch.ceil(i).long()
    j_bottom_left = torch.floor(j).long()
    valid_bottom_left = torch.min(i_bottom_left < h, j_bottom_left >= 0)

    i_bottom_right = torch.ceil(i).long()
    j_bottom_right = torch.ceil(j).long()
    valid_bottom_right = torch.min(i_bottom_right < h, j_bottom_right < w)

    valid_corners = torch.min(
        torch.min(valid_top_left, valid_top_right),
        torch.min(valid_bottom_left, valid_bottom_right)
    )

    i_top_left = i_top_left[valid_corners]
    j_top_left = j_top_left[valid_corners]

    i_top_right = i_top_right[valid_corners]
    j_top_right = j_top_right[valid_corners]

    i_bottom_left = i_bottom_left[valid_corners]
    j_bottom_left = j_bottom_left[valid_corners]

    i_bottom_right = i_bottom_right[valid_corners]
    j_bottom_right = j_bottom_right[valid_corners]

    ids = ids[valid_corners]
    if ids.size(0) == 0:
        raise EmptyTensorError

    # Interpolation
    i = i[ids]
    j = j[ids]
    dist_i_top_left = i - i_top_left.float()
    dist_j_top_left = j - j_top_left.float()
    w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
    w_top_right = (1 - dist_i_top_left) * dist_j_top_left
    w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
    w_bottom_right = dist_i_top_left * dist_j_top_left

    descriptors = (
        w_top_left * dense_features[:, i_top_left, j_top_left] +
        w_top_right * dense_features[:, i_top_right, j_top_right] +
        w_bottom_left * dense_features[:, i_bottom_left, j_bottom_left] +
        w_bottom_right * dense_features[:, i_bottom_right, j_bottom_right]
    )

    pos = torch.cat([i.view(1, -1), j.view(1, -1)], dim=0)

    if not return_corners:
        return [descriptors, pos, ids]
    else:
        corners = torch.stack([
            torch.stack([i_top_left, j_top_left], dim=0),
            torch.stack([i_top_right, j_top_right], dim=0),
            torch.stack([i_bottom_left, j_bottom_left], dim=0),
            torch.stack([i_bottom_right, j_bottom_right], dim=0)
        ], dim=0)
        return [descriptors, pos, ids, corners]


def savefig(filepath, fig=None, dpi=None):
    # TomNorway - https://stackoverflow.com/a/53516034
    if not fig:
        fig = plt.gcf()

    plt.subplots_adjust(0, 0, 1, 1, 0, 0)
    for ax in fig.axes:
        ax.axis('off')
        ax.margins(0, 0)
        ax.xaxis.set_major_locator(plt.NullLocator())
        ax.yaxis.set_major_locator(plt.NullLocator())

    fig.savefig(filepath, pad_inches=0, bbox_inches='tight', dpi=dpi)