File size: 7,335 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import argparse
import numpy as np
import os
import shutil
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import warnings
from lib.dataset import MegaDepthDataset
from lib.exceptions import NoGradientError
from lib.loss import loss_function
from lib.model import D2Net
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
# Seed
torch.manual_seed(1)
if use_cuda:
torch.cuda.manual_seed(1)
np.random.seed(1)
# Argument parsing
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument(
"--dataset_path", type=str, required=True, help="path to the dataset"
)
parser.add_argument(
"--scene_info_path", type=str, required=True, help="path to the processed scenes"
)
parser.add_argument(
"--preprocessing",
type=str,
default="caffe",
help="image preprocessing (caffe or torch)",
)
parser.add_argument(
"--model_file", type=str, default="models/d2_ots.pth", help="path to the full model"
)
parser.add_argument(
"--num_epochs", type=int, default=10, help="number of training epochs"
)
parser.add_argument("--lr", type=float, default=1e-3, help="initial learning rate")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument(
"--num_workers", type=int, default=4, help="number of workers for data loading"
)
parser.add_argument(
"--use_validation",
dest="use_validation",
action="store_true",
help="use the validation split",
)
parser.set_defaults(use_validation=False)
parser.add_argument(
"--log_interval", type=int, default=250, help="loss logging interval"
)
parser.add_argument("--log_file", type=str, default="log.txt", help="loss logging file")
parser.add_argument(
"--plot", dest="plot", action="store_true", help="plot training pairs"
)
parser.set_defaults(plot=False)
parser.add_argument(
"--checkpoint_directory",
type=str,
default="checkpoints",
help="directory for training checkpoints",
)
parser.add_argument(
"--checkpoint_prefix",
type=str,
default="d2",
help="prefix for training checkpoints",
)
args = parser.parse_args()
print(args)
# Create the folders for plotting if need be
if args.plot:
plot_path = "train_vis"
if os.path.isdir(plot_path):
print("[Warning] Plotting directory already exists.")
else:
os.mkdir(plot_path)
# Creating CNN model
model = D2Net(model_file=args.model_file, use_cuda=use_cuda)
# Optimizer
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr
)
# Dataset
if args.use_validation:
validation_dataset = MegaDepthDataset(
scene_list_path="megadepth_utils/valid_scenes.txt",
scene_info_path=args.scene_info_path,
base_path=args.dataset_path,
train=False,
preprocessing=args.preprocessing,
pairs_per_scene=25,
)
validation_dataloader = DataLoader(
validation_dataset, batch_size=args.batch_size, num_workers=args.num_workers
)
training_dataset = MegaDepthDataset(
scene_list_path="megadepth_utils/train_scenes.txt",
scene_info_path=args.scene_info_path,
base_path=args.dataset_path,
preprocessing=args.preprocessing,
)
training_dataloader = DataLoader(
training_dataset, batch_size=args.batch_size, num_workers=args.num_workers
)
# Define epoch function
def process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
dataloader,
device,
log_file,
args,
train=True,
):
epoch_losses = []
torch.set_grad_enabled(train)
progress_bar = tqdm(enumerate(dataloader), total=len(dataloader))
for batch_idx, batch in progress_bar:
if train:
optimizer.zero_grad()
batch["train"] = train
batch["epoch_idx"] = epoch_idx
batch["batch_idx"] = batch_idx
batch["batch_size"] = args.batch_size
batch["preprocessing"] = args.preprocessing
batch["log_interval"] = args.log_interval
try:
loss = loss_function(model, batch, device, plot=args.plot)
except NoGradientError:
continue
current_loss = loss.data.cpu().numpy()[0]
epoch_losses.append(current_loss)
progress_bar.set_postfix(loss=("%.4f" % np.mean(epoch_losses)))
if batch_idx % args.log_interval == 0:
log_file.write(
"[%s] epoch %d - batch %d / %d - avg_loss: %f\n"
% (
"train" if train else "valid",
epoch_idx,
batch_idx,
len(dataloader),
np.mean(epoch_losses),
)
)
if train:
loss.backward()
optimizer.step()
log_file.write(
"[%s] epoch %d - avg_loss: %f\n"
% ("train" if train else "valid", epoch_idx, np.mean(epoch_losses))
)
log_file.flush()
return np.mean(epoch_losses)
# Create the checkpoint directory
if os.path.isdir(args.checkpoint_directory):
print("[Warning] Checkpoint directory already exists.")
else:
os.mkdir(args.checkpoint_directory)
# Open the log file for writing
if os.path.exists(args.log_file):
print("[Warning] Log file already exists.")
log_file = open(args.log_file, "a+")
# Initialize the history
train_loss_history = []
validation_loss_history = []
if args.use_validation:
validation_dataset.build_dataset()
min_validation_loss = process_epoch(
0,
model,
loss_function,
optimizer,
validation_dataloader,
device,
log_file,
args,
train=False,
)
# Start the training
for epoch_idx in range(1, args.num_epochs + 1):
# Process epoch
training_dataset.build_dataset()
train_loss_history.append(
process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
training_dataloader,
device,
log_file,
args,
)
)
if args.use_validation:
validation_loss_history.append(
process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
validation_dataloader,
device,
log_file,
args,
train=False,
)
)
# Save the current checkpoint
checkpoint_path = os.path.join(
args.checkpoint_directory, "%s.%02d.pth" % (args.checkpoint_prefix, epoch_idx)
)
checkpoint = {
"args": args,
"epoch_idx": epoch_idx,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"train_loss_history": train_loss_history,
"validation_loss_history": validation_loss_history,
}
torch.save(checkpoint, checkpoint_path)
if args.use_validation and validation_loss_history[-1] < min_validation_loss:
min_validation_loss = validation_loss_history[-1]
best_checkpoint_path = os.path.join(
args.checkpoint_directory, "%s.best.pth" % args.checkpoint_prefix
)
shutil.copy(checkpoint_path, best_checkpoint_path)
# Close the log file
log_file.close()
|