File size: 5,828 Bytes
404d2af
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
404d2af
8b973ee
 
 
404d2af
8b973ee
 
 
404d2af
8b973ee
 
 
404d2af
8b973ee
 
 
404d2af
8b973ee
 
404d2af
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
 
 
 
 
 
8b973ee
404d2af
8b973ee
404d2af
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
8b973ee
 
 
404d2af
 
8b973ee
 
404d2af
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
8b973ee
 
404d2af
 
 
 
8b973ee
 
404d2af
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
 
404d2af
8b973ee
 
404d2af
 
8b973ee
404d2af
8b973ee
 
 
404d2af
 
 
8b973ee
404d2af
 
 
 
 
8b973ee
404d2af
 
 
 
 
8b973ee
404d2af
8b973ee
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import pdb
import numpy as np
import matplotlib.pyplot as pl


def make_colorwheel():
    """
    Generates a color wheel for optical flow visualization as presented in:
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
        URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun

    Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
    Copyright (c) 2018 Tom Runia
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = np.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
    col = col + RY
    # YG
    colorwheel[col : col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
    colorwheel[col : col + YG, 1] = 255
    col = col + YG
    # GC
    colorwheel[col : col + GC, 1] = 255
    colorwheel[col : col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
    col = col + GC
    # CB
    colorwheel[col : col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
    colorwheel[col : col + CB, 2] = 255
    col = col + CB
    # BM
    colorwheel[col : col + BM, 2] = 255
    colorwheel[col : col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
    col = col + BM
    # MR
    colorwheel[col : col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
    colorwheel[col : col + MR, 0] = 255
    return colorwheel


def flow_compute_color(u, v, convert_to_bgr=False):
    """
    Applies the flow color wheel to (possibly clipped) flow components u and v.
    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun
    :param u: np.ndarray, input horizontal flow
    :param v: np.ndarray, input vertical flow
    :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
    :return:

    Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
    Copyright (c) 2018 Tom Runia
    """

    flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)

    colorwheel = make_colorwheel()  # shape [55x3]
    ncols = colorwheel.shape[0]

    rad = np.sqrt(np.square(u) + np.square(v))
    a = np.arctan2(-v, -u) / np.pi

    fk = (a + 1) / 2 * (ncols - 1)
    k0 = np.floor(fk).astype(np.int32)
    k1 = k0 + 1
    k1[k1 == ncols] = 0
    f = fk - k0

    for i in range(colorwheel.shape[1]):

        tmp = colorwheel[:, i]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1

        idx = rad <= 1
        col[idx] = 1 - rad[idx] * (1 - col[idx])
        col[~idx] = col[~idx] * 0.75  # out of range?

        # Note the 2-i => BGR instead of RGB
        ch_idx = 2 - i if convert_to_bgr else i
        flow_image[:, :, ch_idx] = np.floor(255 * col)

    return flow_image


def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False):
    """
    Expects a two dimensional flow image of shape [H,W,2]
    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun
    :param flow_uv: np.ndarray of shape [H,W,2]
    :param clip_flow: float, maximum clipping value for flow
    :return:

    Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
    Copyright (c) 2018 Tom Runia
    """

    assert flow_uv.ndim == 3, "input flow must have three dimensions"
    assert flow_uv.shape[2] == 2, "input flow must have shape [H,W,2]"

    if clip_flow is not None:
        flow_uv = np.clip(flow_uv, 0, clip_flow)

    u = flow_uv[:, :, 0]
    v = flow_uv[:, :, 1]

    rad = np.sqrt(np.square(u) + np.square(v))
    rad_max = np.max(rad)

    epsilon = 1e-5
    u = u / (rad_max + epsilon)
    v = v / (rad_max + epsilon)

    return flow_compute_color(u, v, convert_to_bgr)


def show_flow(img0, img1, flow, mask=None):
    img0 = np.asarray(img0)
    img1 = np.asarray(img1)
    if mask is None:
        mask = 1
    mask = np.asarray(mask)
    if mask.ndim == 2:
        mask = mask[:, :, None]
    assert flow.ndim == 3
    assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2

    def noticks():
        pl.xticks([])
        pl.yticks([])

    fig = pl.figure("showing correspondences")
    ax1 = pl.subplot(221)
    ax1.numaxis = 0
    pl.imshow(img0 * mask)
    noticks()
    ax2 = pl.subplot(222)
    ax2.numaxis = 1
    pl.imshow(img1)
    noticks()

    ax = pl.subplot(212)
    ax.numaxis = 0
    flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow))
    pl.imshow(flow_img * mask)
    noticks()

    pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02)

    def motion_notify_callback(event):
        if event.inaxes is None:
            return
        x, y = event.xdata, event.ydata
        ax1.lines = []
        ax2.lines = []
        try:
            x, y = int(x + 0.5), int(y + 0.5)
            ax1.plot(x, y, "+", ms=10, mew=2, color="blue", scalex=False, scaley=False)
            x, y = flow[y, x] + (x, y)
            ax2.plot(x, y, "+", ms=10, mew=2, color="red", scalex=False, scaley=False)
            # we redraw only the concerned axes
            renderer = fig.canvas.get_renderer()
            ax1.draw(renderer)
            ax2.draw(renderer)
            fig.canvas.blit(ax1.bbox)
            fig.canvas.blit(ax2.bbox)
        except IndexError:
            return

    cid_move = fig.canvas.mpl_connect("motion_notify_event", motion_notify_callback)
    print("Move your mouse over the images to show matches (ctrl-C to quit)")
    pl.show()