File size: 5,352 Bytes
62c7319
 
 
 
 
 
 
 
 
 
 
 
8b973ee
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
 
 
62c7319
 
8b973ee
 
 
 
 
 
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
 
 
 
 
 
62c7319
 
8b973ee
 
 
 
 
 
62c7319
 
 
 
 
 
 
8b973ee
 
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os.path as osp
import numpy as np
import torch
from roma.utils import *
from PIL import Image
from tqdm import tqdm


class ScanNetBenchmark:
    def __init__(self, data_root="data/scannet") -> None:
        self.data_root = data_root

    def benchmark(self, model, model_name=None):
        model.train(False)
        with torch.no_grad():
            data_root = self.data_root
            tmp = np.load(osp.join(data_root, "test.npz"))
            pairs, rel_pose = tmp["name"], tmp["rel_pose"]
            tot_e_t, tot_e_R, tot_e_pose = [], [], []
            pair_inds = np.random.choice(
                range(len(pairs)), size=len(pairs), replace=False
            )
            for pairind in tqdm(pair_inds, smoothing=0.9):
                scene = pairs[pairind]
                scene_name = f"scene0{scene[0]}_00"
                im_A_path = osp.join(
                    self.data_root,
                    "scans_test",
                    scene_name,
                    "color",
                    f"{scene[2]}.jpg",
                )
                im_A = Image.open(im_A_path)
                im_B_path = osp.join(
                    self.data_root,
                    "scans_test",
                    scene_name,
                    "color",
                    f"{scene[3]}.jpg",
                )
                im_B = Image.open(im_B_path)
                T_gt = rel_pose[pairind].reshape(3, 4)
                R, t = T_gt[:3, :3], T_gt[:3, 3]
                K = np.stack(
                    [
                        np.array([float(i) for i in r.split()])
                        for r in open(
                            osp.join(
                                self.data_root,
                                "scans_test",
                                scene_name,
                                "intrinsic",
                                "intrinsic_color.txt",
                            ),
                            "r",
                        )
                        .read()
                        .split("\n")
                        if r
                    ]
                )
                w1, h1 = im_A.size
                w2, h2 = im_B.size
                K1 = K.copy()
                K2 = K.copy()
                dense_matches, dense_certainty = model.match(im_A_path, im_B_path)
                sparse_matches, sparse_certainty = model.sample(
                    dense_matches, dense_certainty, 5000
                )
                scale1 = 480 / min(w1, h1)
                scale2 = 480 / min(w2, h2)
                w1, h1 = scale1 * w1, scale1 * h1
                w2, h2 = scale2 * w2, scale2 * h2
                K1 = K1 * scale1
                K2 = K2 * scale2

                offset = 0.5
                kpts1 = sparse_matches[:, :2]
                kpts1 = np.stack(
                    (
                        w1 * (kpts1[:, 0] + 1) / 2 - offset,
                        h1 * (kpts1[:, 1] + 1) / 2 - offset,
                    ),
                    axis=-1,
                )
                kpts2 = sparse_matches[:, 2:]
                kpts2 = np.stack(
                    (
                        w2 * (kpts2[:, 0] + 1) / 2 - offset,
                        h2 * (kpts2[:, 1] + 1) / 2 - offset,
                    ),
                    axis=-1,
                )
                for _ in range(5):
                    shuffling = np.random.permutation(np.arange(len(kpts1)))
                    kpts1 = kpts1[shuffling]
                    kpts2 = kpts2[shuffling]
                    try:
                        norm_threshold = 0.5 / (
                            np.mean(np.abs(K1[:2, :2])) + np.mean(np.abs(K2[:2, :2]))
                        )
                        R_est, t_est, mask = estimate_pose(
                            kpts1,
                            kpts2,
                            K1,
                            K2,
                            norm_threshold,
                            conf=0.99999,
                        )
                        T1_to_2_est = np.concatenate((R_est, t_est), axis=-1)  #
                        e_t, e_R = compute_pose_error(T1_to_2_est, R, t)
                        e_pose = max(e_t, e_R)
                    except Exception as e:
                        print(repr(e))
                        e_t, e_R = 90, 90
                        e_pose = max(e_t, e_R)
                    tot_e_t.append(e_t)
                    tot_e_R.append(e_R)
                    tot_e_pose.append(e_pose)
                tot_e_t.append(e_t)
                tot_e_R.append(e_R)
                tot_e_pose.append(e_pose)
            tot_e_pose = np.array(tot_e_pose)
            thresholds = [5, 10, 20]
            auc = pose_auc(tot_e_pose, thresholds)
            acc_5 = (tot_e_pose < 5).mean()
            acc_10 = (tot_e_pose < 10).mean()
            acc_15 = (tot_e_pose < 15).mean()
            acc_20 = (tot_e_pose < 20).mean()
            map_5 = acc_5
            map_10 = np.mean([acc_5, acc_10])
            map_20 = np.mean([acc_5, acc_10, acc_15, acc_20])
            return {
                "auc_5": auc[0],
                "auc_10": auc[1],
                "auc_20": auc[2],
                "map_5": map_5,
                "map_10": map_10,
                "map_20": map_20,
            }