File size: 5,002 Bytes
404d2af
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
8b973ee
404d2af
 
8b973ee
 
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
404d2af
8b973ee
404d2af
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
404d2af
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import glob
import pickle
from posixpath import basename
import numpy as np
import h5py
from .base_dumper import BaseDumper

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
import utils


class scannet(BaseDumper):
    def get_seqs(self):
        self.pair_list = np.loadtxt("../assets/scannet_eval_list.txt", dtype=str)
        self.seq_list = np.unique(
            np.asarray([path.split("/")[0] for path in self.pair_list[:, 0]], dtype=str)
        )
        self.dump_seq, self.img_seq = [], []
        for seq in self.seq_list:
            dump_dir = os.path.join(self.config["feature_dump_dir"], seq)
            cur_img_seq = glob.glob(
                os.path.join(
                    os.path.join(self.config["rawdata_dir"], seq, "img", "*.jpg")
                )
            )
            cur_dump_seq = [
                os.path.join(dump_dir, path.split("/")[-1])
                + "_"
                + self.config["extractor"]["name"]
                + "_"
                + str(self.config["extractor"]["num_kpt"])
                + ".hdf5"
                for path in cur_img_seq
            ]
            self.img_seq += cur_img_seq
            self.dump_seq += cur_dump_seq

    def format_dump_folder(self):
        if not os.path.exists(self.config["feature_dump_dir"]):
            os.mkdir(self.config["feature_dump_dir"])
        for seq in self.seq_list:
            seq_dir = os.path.join(self.config["feature_dump_dir"], seq)
            if not os.path.exists(seq_dir):
                os.mkdir(seq_dir)

    def format_dump_data(self):
        print("Formatting data...")
        self.data = {
            "K1": [],
            "K2": [],
            "R": [],
            "T": [],
            "e": [],
            "f": [],
            "fea_path1": [],
            "fea_path2": [],
            "img_path1": [],
            "img_path2": [],
        }

        for pair in self.pair_list:
            img_path1, img_path2 = pair[0], pair[1]
            seq = img_path1.split("/")[0]
            index1, index2 = int(img_path1.split("/")[-1][:-4]), int(
                img_path2.split("/")[-1][:-4]
            )
            ex1, ex2 = np.loadtxt(
                os.path.join(
                    self.config["rawdata_dir"], seq, "extrinsic", str(index1) + ".txt"
                ),
                dtype=float,
            ), np.loadtxt(
                os.path.join(
                    self.config["rawdata_dir"], seq, "extrinsic", str(index2) + ".txt"
                ),
                dtype=float,
            )
            K1, K2 = np.loadtxt(
                os.path.join(
                    self.config["rawdata_dir"], seq, "intrinsic", str(index1) + ".txt"
                ),
                dtype=float,
            ), np.loadtxt(
                os.path.join(
                    self.config["rawdata_dir"], seq, "intrinsic", str(index2) + ".txt"
                ),
                dtype=float,
            )

            relative_extrinsic = np.matmul(np.linalg.inv(ex2), ex1)
            dR, dt = relative_extrinsic[:3, :3], relative_extrinsic[:3, 3]
            dt /= np.sqrt(np.sum(dt**2))

            e_gt_unnorm = np.reshape(
                np.matmul(
                    np.reshape(
                        utils.evaluation_utils.np_skew_symmetric(
                            dt.astype("float64").reshape(1, 3)
                        ),
                        (3, 3),
                    ),
                    np.reshape(dR.astype("float64"), (3, 3)),
                ),
                (3, 3),
            )
            e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
            f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1)
            f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm)

            self.data["K1"].append(K1), self.data["K2"].append(K2)
            self.data["R"].append(dR), self.data["T"].append(dt)
            self.data["e"].append(e_gt), self.data["f"].append(f_gt)

            dump_seq_dir = os.path.join(self.config["feature_dump_dir"], seq)
            fea_path1, fea_path2 = os.path.join(
                dump_seq_dir,
                img_path1.split("/")[-1]
                + "_"
                + self.config["extractor"]["name"]
                + "_"
                + str(self.config["extractor"]["num_kpt"])
                + ".hdf5",
            ), os.path.join(
                dump_seq_dir,
                img_path2.split("/")[-1]
                + "_"
                + self.config["extractor"]["name"]
                + "_"
                + str(self.config["extractor"]["num_kpt"])
                + ".hdf5",
            )
            self.data["img_path1"].append(img_path1), self.data["img_path2"].append(
                img_path2
            )
            self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append(
                fea_path2
            )

        self.form_standard_dataset()