File size: 18,066 Bytes
8b9ccdd
 
9223079
8b9ccdd
 
9223079
8b9ccdd
9223079
 
 
5c1ffd8
8b9ccdd
9223079
 
 
8d7cbc7
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab830e5
8b9ccdd
 
 
8d7cbc7
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
5c1ffd8
8b9ccdd
 
 
 
 
 
 
 
 
 
 
8d7cbc7
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7cbc7
5c1ffd8
8d7cbc7
5c1ffd8
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7cbc7
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7cbc7
8b9ccdd
 
 
 
 
 
 
 
 
 
 
0cc9e81
 
8b9ccdd
 
 
 
 
 
 
 
0cc9e81
 
 
ab830e5
 
 
 
0cc9e81
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf53cb
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1ffd8
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1ffd8
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9ccdd
 
 
9223079
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
8d7cbc7
 
 
 
 
8b9ccdd
 
 
 
5c1ffd8
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1ffd8
 
 
 
 
 
0cc9e81
 
 
 
 
 
 
5c1ffd8
 
 
 
 
 
 
 
 
8b9ccdd
5c1ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
5c1ffd8
8b9ccdd
5c1ffd8
8b9ccdd
5c1ffd8
 
 
 
 
 
 
8b9ccdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab830e5
 
 
 
 
62cd4d6
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d64b6d
 
9223079
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os
import random
import numpy as np
import torch
from itertools import combinations
import cv2
import gradio as gr
from hloc import matchers, extractors
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from hloc.utils.viz import add_text, plot_keypoints
from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches

device = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_SETTING_THRESHOLD = 0.1
DEFAULT_SETTING_MAX_FEATURES = 2000
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
DEFAULT_ENABLE_RANSAC = True
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_MATCHING_THRESHOLD = 0.2
DEFAULT_SETTING_GEOMETRY = "Homography"


def get_model(match_conf):
    Model = dynamic_load(matchers, match_conf["model"]["name"])
    model = Model(match_conf["model"]).eval().to(device)
    return model


def get_feature_model(conf):
    Model = dynamic_load(extractors, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)
    return model


def gen_examples():
    random.seed(1)
    example_matchers = [
        "disk+lightglue",
        "loftr",
        "disk",
        "d2net",
        "topicfm",
        "superpoint+superglue",
        "disk+dualsoftmax",
        "lanet",
    ]

    def gen_images_pairs(path: str, count: int = 5):
        imgs_list = [
            os.path.join(path, file)
            for file in os.listdir(path)
            if file.lower().endswith((".jpg", ".jpeg", ".png"))
        ]
        pairs = list(combinations(imgs_list, 2))
        selected = random.sample(range(len(pairs)), count)
        return [pairs[i] for i in selected]

    # image pair path
    path = "datasets/sacre_coeur/mapping"
    pairs = gen_images_pairs(path, len(example_matchers))
    match_setting_threshold = DEFAULT_SETTING_THRESHOLD
    match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
    detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
    ransac_method = DEFAULT_RANSAC_METHOD
    ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
    ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
    ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
    input_lists = []
    for pair, mt in zip(pairs, example_matchers):
        input_lists.append(
            [
                pair[0],
                pair[1],
                match_setting_threshold,
                match_setting_max_features,
                detect_keypoints_threshold,
                mt,
                # enable_ransac,
                ransac_method,
                ransac_reproj_threshold,
                ransac_confidence,
                ransac_max_iter,
            ]
        )
    return input_lists


def filter_matches(
    pred,
    ransac_method=DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
):
    mkpts0 = None
    mkpts1 = None
    feature_type = None
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        feature_type = "KEYPOINT"
    elif (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]
        feature_type = "LINE"
    else:
        return pred
    if mkpts0 is None or mkpts0 is None:
        return pred
    if ransac_method not in ransac_zoo.keys():
        ransac_method = DEFAULT_RANSAC_METHOD

    if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
        return pred
    H, mask = cv2.findHomography(
        mkpts0,
        mkpts1,
        method=ransac_zoo[ransac_method],
        ransacReprojThreshold=ransac_reproj_threshold,
        confidence=ransac_confidence,
        maxIters=ransac_max_iter,
    )
    mask = np.array(mask.ravel().astype("bool"), dtype="bool")
    if H is not None:
        if feature_type == "KEYPOINT":
            pred["keypoints0_orig"] = mkpts0[mask]
            pred["keypoints1_orig"] = mkpts1[mask]
            pred["mconf"] = pred["mconf"][mask]
        elif feature_type == "LINE":
            pred["line_keypoints0_orig"] = mkpts0[mask]
            pred["line_keypoints1_orig"] = mkpts1[mask]
    return pred


def compute_geom(
    pred,
    ransac_method=DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
) -> dict:
    mkpts0 = None
    mkpts1 = None

    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]

    if (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

    if mkpts0 is not None and mkpts1 is not None:
        if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
            return {}
        h1, w1, _ = pred["image0_orig"].shape
        geo_info = {}
        F, inliers = cv2.findFundamentalMat(
            mkpts0,
            mkpts1,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        if F is not None:
            geo_info["Fundamental"] = F.tolist()
        H, _ = cv2.findHomography(
            mkpts1,
            mkpts0,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        if H is not None:
            geo_info["Homography"] = H.tolist()
            _, H1, H2 = cv2.stereoRectifyUncalibrated(
                mkpts0.reshape(-1, 2),
                mkpts1.reshape(-1, 2),
                F,
                imgSize=(w1, h1),
            )
            geo_info["H1"] = H1.tolist()
            geo_info["H2"] = H2.tolist()
        return geo_info
    else:
        return {}


def wrap_images(img0, img1, geo_info, geom_type):
    h1, w1, _ = img0.shape
    h2, w2, _ = img1.shape
    result_matrix = None
    if geo_info is not None and len(geo_info) != 0:
        rectified_image0 = img0
        rectified_image1 = None
        H = np.array(geo_info["Homography"])
        F = np.array(geo_info["Fundamental"])
        title = []
        if geom_type == "Homography":
            rectified_image1 = cv2.warpPerspective(
                img1, H, (img0.shape[1], img0.shape[0])
            )
            result_matrix = H
            title = ["Image 0", "Image 1 - warped"]
        elif geom_type == "Fundamental":
            H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
            rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
            rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
            result_matrix = F
            title = ["Image 0 - warped", "Image 1 - warped"]
        else:
            print("Error: Unknown geometry type")
        fig = plot_images(
            [rectified_image0.squeeze(), rectified_image1.squeeze()],
            title,
            dpi=300,
        )
        dictionary = {
            "row1": result_matrix[0].tolist(),
            "row2": result_matrix[1].tolist(),
            "row3": result_matrix[2].tolist(),
        }
        return fig2im(fig), dictionary
    else:
        return None, None


def change_estimate_geom(input_image0, input_image1, matches_info, choice):
    if (
        matches_info is None
        or len(matches_info) < 1
        or "geom_info" not in matches_info.keys()
    ):
        return None, None
    geom_info = matches_info["geom_info"]
    wrapped_images = None
    if choice != "No":
        wrapped_images, _ = wrap_images(
            input_image0, input_image1, geom_info, choice
        )
        return wrapped_images, matches_info
    else:
        return None, None


def display_matches(pred: dict, titles=[], dpi=300):
    img0 = pred["image0_orig"]
    img1 = pred["image1_orig"]

    num_inliers = 0
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        num_inliers = len(mkpts0)
        if "mconf" in pred.keys():
            mconf = pred["mconf"]
        else:
            mconf = np.ones(len(mkpts0))
        fig_mkpts = draw_matches(
            mkpts0,
            mkpts1,
            img0,
            img1,
            mconf,
            dpi=dpi,
            titles=titles,
        )
        fig = fig_mkpts
    if "line0_orig" in pred.keys() and "line1_orig" in pred.keys():
        # lines
        mtlines0 = pred["line0_orig"]
        mtlines1 = pred["line1_orig"]
        num_inliers = len(mtlines0)
        fig_lines = plot_images(
            [img0.squeeze(), img1.squeeze()],
            ["Image 0 - matched lines", "Image 1 - matched lines"],
            dpi=300,
        )
        fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
        fig_lines = fig2im(fig_lines)

        # keypoints
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

        if mkpts0 is not None and mkpts1 is not None:
            num_inliers = len(mkpts0)
            if "mconf" in pred.keys():
                mconf = pred["mconf"]
            else:
                mconf = np.ones(len(mkpts0))
            fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
            fig_lines = cv2.resize(
                fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
            )
            fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
        else:
            fig = fig_lines
    return fig, num_inliers


def run_matching(
    image0,
    image1,
    match_threshold,
    extract_max_keypoints,
    keypoint_threshold,
    key,
    ransac_method=DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
    choice_estimate_geom=DEFAULT_SETTING_GEOMETRY,
):
    # image0 and image1 is RGB mode
    if image0 is None or image1 is None:
        raise gr.Error("Error: No images found! Please upload two images.")
    # init output
    output_keypoints = None
    output_matches_raw = None
    output_matches_ransac = None

    model = matcher_zoo[key]
    match_conf = model["config"]
    # update match config
    match_conf["model"]["match_threshold"] = match_threshold
    match_conf["model"]["max_keypoints"] = extract_max_keypoints

    matcher = get_model(match_conf)
    if model["dense"]:
        pred = match_dense.match_images(
            matcher, image0, image1, match_conf["preprocessing"], device=device
        )
        del matcher
        extract_conf = None
    else:
        extract_conf = model["config_feature"]
        # update extract config
        extract_conf["model"]["max_keypoints"] = extract_max_keypoints
        extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
        extractor = get_feature_model(extract_conf)
        pred0 = extract_features.extract(
            extractor, image0, extract_conf["preprocessing"]
        )
        pred1 = extract_features.extract(
            extractor, image1, extract_conf["preprocessing"]
        )
        pred = match_features.match_images(matcher, pred0, pred1)
        del extractor

    # plot images with keypoints
    titles = [
        "Image 0 - Keypoints",
        "Image 1 - Keypoints",
    ]
    output_keypoints = plot_images([image0, image1], titles=titles, dpi=300)
    if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
        plot_keypoints([pred["keypoints0"], pred["keypoints1"]])
        text = (
            f"# keypoints0: {len(pred['keypoints0'])} \n"
            + f"# keypoints1: {len(pred['keypoints1'])}"
        )
        add_text(0, text, fs=15)
    output_keypoints = fig2im(output_keypoints)

    # plot images with raw matches
    titles = [
        "Image 0 - Raw matched keypoints",
        "Image 1 - Raw matched keypoints",
    ]

    output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)

    # if enable_ransac:
    filter_matches(
        pred,
        ransac_method=ransac_method,
        ransac_reproj_threshold=ransac_reproj_threshold,
        ransac_confidence=ransac_confidence,
        ransac_max_iter=ransac_max_iter,
    )

    # plot images with ransac matches
    titles = [
        "Image 0 - Ransac matched keypoints",
        "Image 1 - Ransac matched keypoints",
    ]
    output_matches_ransac, num_matches_ransac = display_matches(
        pred, titles=titles
    )

    # plot wrapped images
    geom_info = compute_geom(pred)
    output_wrapped, _ = change_estimate_geom(
        pred["image0_orig"],
        pred["image1_orig"],
        {"geom_info": geom_info},
        choice_estimate_geom,
    )

    del pred

    return (
        output_keypoints,
        output_matches_raw,
        output_matches_ransac,
        {
            "number raw matches": num_matches_raw,
            "number ransac matches": num_matches_ransac,
        },
        {
            "match_conf": match_conf,
            "extractor_conf": extract_conf,
        },
        {
            "geom_info": geom_info,
        },
        output_wrapped,
    )


# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
    "RANSAC": cv2.RANSAC,
    "USAC_MAGSAC": cv2.USAC_MAGSAC,
    "USAC_DEFAULT": cv2.USAC_DEFAULT,
    "USAC_FM_8PTS": cv2.USAC_FM_8PTS,
    "USAC_PROSAC": cv2.USAC_PROSAC,
    "USAC_FAST": cv2.USAC_FAST,
    "USAC_ACCURATE": cv2.USAC_ACCURATE,
    "USAC_PARALLEL": cv2.USAC_PARALLEL,
}

# Matchers collections
matcher_zoo = {
    "gluestick": {"config": match_dense.confs["gluestick"], "dense": True},
    "sold2": {"config": match_dense.confs["sold2"], "dense": True},
    # 'dedode-sparse': {
    #     'config': match_dense.confs['dedode_sparse'],
    #     'dense': True  # dense mode, we need 2 images
    # },
    "loftr": {"config": match_dense.confs["loftr"], "dense": True},
    "topicfm": {"config": match_dense.confs["topicfm"], "dense": True},
    "aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True},
    "dedode": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["dedode"],
        "dense": False,
    },
    "superpoint+superglue": {
        "config": match_features.confs["superglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "superpoint+lightglue": {
        "config": match_features.confs["superpoint-lightglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "disk+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk+lightglue": {
        "config": match_features.confs["disk-lightglue"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+mnn": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "sift+sgmnet": {
        "config": match_features.confs["sgmnet"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    "sosnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sosnet"],
        "dense": False,
    },
    "hardnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["hardnet"],
        "dense": False,
    },
    "d2net": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["d2net-ss"],
        "dense": False,
    },
    "rord": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["rord"],
        "dense": False,
    },
    # "d2net-ms": {
    #     "config": match_features.confs["NN-mutual"],
    #     "config_feature": extract_features.confs["d2net-ms"],
    #     "dense": False,
    # },
    "alike": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["alike"],
        "dense": False,
    },
    "lanet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["lanet"],
        "dense": False,
    },
    "r2d2": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["r2d2"],
        "dense": False,
    },
    "darkfeat": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["darkfeat"],
        "dense": False,
    },
    "sift": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    # "roma": {"config": match_dense.confs["roma"], "dense": True},
    # "DKMv3": {"config": match_dense.confs["dkm"], "dense": True},
}