|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from .geom import rnd_sample, interpolate |
|
|
|
|
|
class MultiSampler(nn.Module): |
|
"""Similar to NghSampler, but doesnt warp the 2nd image. |
|
Distance to GT => 0 ... pos_d ... neg_d ... ngh |
|
Pixel label => + + + + + + 0 0 - - - - - - - |
|
|
|
Subsample on query side: if > 0, regular grid |
|
< 0, random points |
|
In both cases, the number of query points is = W*H/subq**2 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ngh, |
|
subq=1, |
|
subd=1, |
|
pos_d=0, |
|
neg_d=2, |
|
border=None, |
|
maxpool_pos=True, |
|
subd_neg=0, |
|
): |
|
nn.Module.__init__(self) |
|
assert 0 <= pos_d < neg_d <= (ngh if ngh else 99) |
|
self.ngh = ngh |
|
self.pos_d = pos_d |
|
self.neg_d = neg_d |
|
assert subd <= ngh or ngh == 0 |
|
assert subq != 0 |
|
self.sub_q = subq |
|
self.sub_d = subd |
|
self.sub_d_neg = subd_neg |
|
if border is None: |
|
border = ngh |
|
assert border >= ngh, "border has to be larger than ngh" |
|
self.border = border |
|
self.maxpool_pos = maxpool_pos |
|
self.precompute_offsets() |
|
|
|
def precompute_offsets(self): |
|
pos_d2 = self.pos_d**2 |
|
neg_d2 = self.neg_d**2 |
|
rad2 = self.ngh**2 |
|
rad = (self.ngh // self.sub_d) * self.ngh |
|
pos = [] |
|
neg = [] |
|
for j in range(-rad, rad + 1, self.sub_d): |
|
for i in range(-rad, rad + 1, self.sub_d): |
|
d2 = i * i + j * j |
|
if d2 <= pos_d2: |
|
pos.append((i, j)) |
|
elif neg_d2 <= d2 <= rad2: |
|
neg.append((i, j)) |
|
|
|
self.register_buffer("pos_offsets", torch.LongTensor(pos).view(-1, 2).t()) |
|
self.register_buffer("neg_offsets", torch.LongTensor(neg).view(-1, 2).t()) |
|
|
|
def forward( |
|
self, |
|
feat0, |
|
feat1, |
|
noise_feat0, |
|
noise_feat1, |
|
conf0, |
|
conf1, |
|
noise_conf0, |
|
noise_conf1, |
|
pos0, |
|
pos1, |
|
B, |
|
H, |
|
W, |
|
N=2500, |
|
): |
|
pscores_ls, nscores_ls, distractors_ls = [], [], [] |
|
valid_feat0_ls = [] |
|
noise_pscores_ls, noise_nscores_ls, noise_distractors_ls = [], [], [] |
|
valid_noise_feat0_ls = [] |
|
valid_pos1_ls, valid_pos2_ls = [], [] |
|
qconf_ls = [] |
|
noise_qconf_ls = [] |
|
mask_ls = [] |
|
|
|
for i in range(B): |
|
tmp_mask = ( |
|
(pos0[i][:, 1] >= self.border) |
|
* (pos0[i][:, 1] < W - self.border) |
|
* (pos0[i][:, 0] >= self.border) |
|
* (pos0[i][:, 0] < H - self.border) |
|
) |
|
|
|
selected_pos0 = pos0[i][tmp_mask] |
|
selected_pos1 = pos1[i][tmp_mask] |
|
valid_pos0, valid_pos1 = rnd_sample([selected_pos0, selected_pos1], N) |
|
|
|
|
|
valid_feat0 = interpolate(valid_pos0 / 4, feat0[i]) |
|
valid_feat0 = F.normalize(valid_feat0, p=2, dim=-1) |
|
qconf = interpolate(valid_pos0 / 4, conf0[i]) |
|
|
|
valid_noise_feat0 = interpolate(valid_pos0 / 4, noise_feat0[i]) |
|
valid_noise_feat0 = F.normalize(valid_noise_feat0, p=2, dim=-1) |
|
noise_qconf = interpolate(valid_pos0 / 4, noise_conf0[i]) |
|
|
|
|
|
mask = ( |
|
(valid_pos1[:, 1] >= 0) |
|
* (valid_pos1[:, 1] < W) |
|
* (valid_pos1[:, 0] >= 0) |
|
* (valid_pos1[:, 0] < H) |
|
) |
|
|
|
def clamp(xy): |
|
xy = xy |
|
torch.clamp(xy[0], 0, H - 1, out=xy[0]) |
|
torch.clamp(xy[1], 0, W - 1, out=xy[1]) |
|
return xy |
|
|
|
|
|
valid_pos1p = clamp( |
|
valid_pos1.t()[:, None, :] |
|
+ self.pos_offsets[:, :, None].to(valid_pos1.device) |
|
) |
|
valid_pos1p = valid_pos1p.permute(1, 2, 0).reshape( |
|
-1, 2 |
|
) |
|
valid_feat1p = interpolate(valid_pos1p / 4, feat1[i]).reshape( |
|
self.pos_offsets.shape[-1], -1, 128 |
|
) |
|
valid_feat1p = F.normalize(valid_feat1p, p=2, dim=-1) |
|
valid_noise_feat1p = interpolate(valid_pos1p / 4, feat1[i]).reshape( |
|
self.pos_offsets.shape[-1], -1, 128 |
|
) |
|
valid_noise_feat1p = F.normalize( |
|
valid_noise_feat1p, p=2, dim=-1 |
|
) |
|
|
|
pscores = ( |
|
(valid_feat0[None, :, :] * valid_feat1p).sum(dim=-1).t() |
|
) |
|
pscores, pos = pscores.max(dim=1, keepdim=True) |
|
sel = clamp( |
|
valid_pos1.t() + self.pos_offsets[:, pos.view(-1)].to(valid_pos1.device) |
|
) |
|
qconf = (qconf + interpolate(sel.t() / 4, conf1[i])) / 2 |
|
noise_pscores = ( |
|
(valid_noise_feat0[None, :, :] * valid_noise_feat1p).sum(dim=-1).t() |
|
) |
|
noise_pscores, noise_pos = noise_pscores.max(dim=1, keepdim=True) |
|
noise_sel = clamp( |
|
valid_pos1.t() |
|
+ self.pos_offsets[:, noise_pos.view(-1)].to(valid_pos1.device) |
|
) |
|
noise_qconf = ( |
|
noise_qconf + interpolate(noise_sel.t() / 4, noise_conf1[i]) |
|
) / 2 |
|
|
|
|
|
valid_pos1n = clamp( |
|
valid_pos1.t()[:, None, :] |
|
+ self.neg_offsets[:, :, None].to(valid_pos1.device) |
|
) |
|
valid_pos1n = valid_pos1n.permute(1, 2, 0).reshape( |
|
-1, 2 |
|
) |
|
valid_feat1n = interpolate(valid_pos1n / 4, feat1[i]).reshape( |
|
self.neg_offsets.shape[-1], -1, 128 |
|
) |
|
valid_feat1n = F.normalize(valid_feat1n, p=2, dim=-1) |
|
nscores = ( |
|
(valid_feat0[None, :, :] * valid_feat1n).sum(dim=-1).t() |
|
) |
|
valid_noise_feat1n = interpolate(valid_pos1n / 4, noise_feat1[i]).reshape( |
|
self.neg_offsets.shape[-1], -1, 128 |
|
) |
|
valid_noise_feat1n = F.normalize( |
|
valid_noise_feat1n, p=2, dim=-1 |
|
) |
|
noise_nscores = ( |
|
(valid_noise_feat0[None, :, :] * valid_noise_feat1n).sum(dim=-1).t() |
|
) |
|
|
|
if self.sub_d_neg: |
|
valid_pos2 = rnd_sample([selected_pos1], N)[0] |
|
distractors = interpolate(valid_pos2 / 4, feat1[i]) |
|
distractors = F.normalize(distractors, p=2, dim=-1) |
|
noise_distractors = interpolate(valid_pos2 / 4, noise_feat1[i]) |
|
noise_distractors = F.normalize(noise_distractors, p=2, dim=-1) |
|
|
|
pscores_ls.append(pscores) |
|
nscores_ls.append(nscores) |
|
distractors_ls.append(distractors) |
|
valid_feat0_ls.append(valid_feat0) |
|
noise_pscores_ls.append(noise_pscores) |
|
noise_nscores_ls.append(noise_nscores) |
|
noise_distractors_ls.append(noise_distractors) |
|
valid_noise_feat0_ls.append(valid_noise_feat0) |
|
valid_pos1_ls.append(valid_pos1) |
|
valid_pos2_ls.append(valid_pos2) |
|
qconf_ls.append(qconf) |
|
noise_qconf_ls.append(noise_qconf) |
|
mask_ls.append(mask) |
|
|
|
N = np.min([len(i) for i in qconf_ls]) |
|
|
|
|
|
qconf = torch.stack([i[:N] for i in qconf_ls], dim=0).squeeze(-1) |
|
mask = torch.stack([i[:N] for i in mask_ls], dim=0) |
|
pscores = torch.cat([i[:N] for i in pscores_ls], dim=0) |
|
nscores = torch.cat([i[:N] for i in nscores_ls], dim=0) |
|
distractors = torch.cat([i[:N] for i in distractors_ls], dim=0) |
|
valid_feat0 = torch.cat([i[:N] for i in valid_feat0_ls], dim=0) |
|
valid_pos1 = torch.cat([i[:N] for i in valid_pos1_ls], dim=0) |
|
valid_pos2 = torch.cat([i[:N] for i in valid_pos2_ls], dim=0) |
|
|
|
noise_qconf = torch.stack([i[:N] for i in noise_qconf_ls], dim=0).squeeze(-1) |
|
noise_pscores = torch.cat([i[:N] for i in noise_pscores_ls], dim=0) |
|
noise_nscores = torch.cat([i[:N] for i in noise_nscores_ls], dim=0) |
|
noise_distractors = torch.cat([i[:N] for i in noise_distractors_ls], dim=0) |
|
valid_noise_feat0 = torch.cat([i[:N] for i in valid_noise_feat0_ls], dim=0) |
|
|
|
|
|
dscores = torch.matmul(valid_feat0, distractors.t()) |
|
noise_dscores = torch.matmul(valid_noise_feat0, noise_distractors.t()) |
|
|
|
dis2 = (valid_pos2[:, 1] - valid_pos1[:, 1][:, None]) ** 2 + ( |
|
valid_pos2[:, 0] - valid_pos1[:, 0][:, None] |
|
) ** 2 |
|
b = torch.arange(B, device=dscores.device)[:, None].expand(B, N).reshape(-1) |
|
dis2 += (b != b[:, None]).long() * self.neg_d**2 |
|
dscores[dis2 < self.neg_d**2] = 0 |
|
noise_dscores[dis2 < self.neg_d**2] = 0 |
|
scores = torch.cat((pscores, nscores, dscores), dim=1) |
|
noise_scores = torch.cat((noise_pscores, noise_nscores, noise_dscores), dim=1) |
|
|
|
gt = scores.new_zeros(scores.shape, dtype=torch.uint8) |
|
gt[:, : pscores.shape[1]] = 1 |
|
|
|
return scores, noise_scores, gt, mask, qconf, noise_qconf |
|
|