|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import seaborn as sns |
|
|
|
|
|
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): |
|
"""Plot a set of images horizontally. |
|
Args: |
|
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). |
|
titles: a list of strings, as titles for each image. |
|
cmaps: colormaps for monochrome images. |
|
adaptive: whether the figure size should fit the image aspect ratios. |
|
""" |
|
n = len(imgs) |
|
if not isinstance(cmaps, (list, tuple)): |
|
cmaps = [cmaps] * n |
|
|
|
if adaptive: |
|
ratios = [i.shape[1] / i.shape[0] for i in imgs] |
|
else: |
|
ratios = [4 / 3] * n |
|
figsize = [sum(ratios) * 4.5, 4.5] |
|
fig, ax = plt.subplots( |
|
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} |
|
) |
|
if n == 1: |
|
ax = [ax] |
|
for i in range(n): |
|
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) |
|
ax[i].get_yaxis().set_ticks([]) |
|
ax[i].get_xaxis().set_ticks([]) |
|
ax[i].set_axis_off() |
|
for spine in ax[i].spines.values(): |
|
spine.set_visible(False) |
|
if titles: |
|
ax[i].set_title(titles[i]) |
|
fig.tight_layout(pad=pad) |
|
return ax |
|
|
|
|
|
def plot_keypoints(kpts, colors="lime", ps=4, alpha=1): |
|
"""Plot keypoints for existing images. |
|
Args: |
|
kpts: list of ndarrays of size (N, 2). |
|
colors: string, or list of list of tuples (one for each keypoints). |
|
ps: size of the keypoints as float. |
|
""" |
|
if not isinstance(colors, list): |
|
colors = [colors] * len(kpts) |
|
axes = plt.gcf().axes |
|
for a, k, c in zip(axes, kpts, colors): |
|
a.scatter(k[:, 0], k[:, 1], c=c, s=ps, alpha=alpha, linewidths=0) |
|
|
|
|
|
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0): |
|
"""Plot matches for a pair of existing images. |
|
Args: |
|
kpts0, kpts1: corresponding keypoints of size (N, 2). |
|
color: color of each match, string or RGB tuple. Random if not given. |
|
lw: width of the lines. |
|
ps: size of the end points (no endpoint if ps=0) |
|
indices: indices of the images to draw the matches on. |
|
a: alpha opacity of the match lines. |
|
""" |
|
fig = plt.gcf() |
|
ax = fig.axes |
|
assert len(ax) > max(indices) |
|
ax0, ax1 = ax[indices[0]], ax[indices[1]] |
|
fig.canvas.draw() |
|
|
|
assert len(kpts0) == len(kpts1) |
|
if color is None: |
|
color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() |
|
elif len(color) > 0 and not isinstance(color[0], (tuple, list)): |
|
color = [color] * len(kpts0) |
|
|
|
if lw > 0: |
|
|
|
transFigure = fig.transFigure.inverted() |
|
fkpts0 = transFigure.transform(ax0.transData.transform(kpts0)) |
|
fkpts1 = transFigure.transform(ax1.transData.transform(kpts1)) |
|
fig.lines += [ |
|
matplotlib.lines.Line2D( |
|
(fkpts0[i, 0], fkpts1[i, 0]), |
|
(fkpts0[i, 1], fkpts1[i, 1]), |
|
zorder=1, |
|
transform=fig.transFigure, |
|
c=color[i], |
|
linewidth=lw, |
|
alpha=a, |
|
) |
|
for i in range(len(kpts0)) |
|
] |
|
|
|
|
|
ax0.autoscale(enable=False) |
|
ax1.autoscale(enable=False) |
|
|
|
if ps > 0: |
|
ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) |
|
ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) |
|
|
|
|
|
def plot_lines( |
|
lines, |
|
line_colors="orange", |
|
point_colors="cyan", |
|
ps=4, |
|
lw=2, |
|
alpha=1.0, |
|
indices=(0, 1), |
|
): |
|
"""Plot lines and endpoints for existing images. |
|
Args: |
|
lines: list of ndarrays of size (N, 2, 2). |
|
colors: string, or list of list of tuples (one for each keypoints). |
|
ps: size of the keypoints as float pixels. |
|
lw: line width as float pixels. |
|
alpha: transparency of the points and lines. |
|
indices: indices of the images to draw the matches on. |
|
""" |
|
if not isinstance(line_colors, list): |
|
line_colors = [line_colors] * len(lines) |
|
if not isinstance(point_colors, list): |
|
point_colors = [point_colors] * len(lines) |
|
|
|
fig = plt.gcf() |
|
ax = fig.axes |
|
assert len(ax) > max(indices) |
|
axes = [ax[i] for i in indices] |
|
fig.canvas.draw() |
|
|
|
|
|
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors): |
|
for i in range(len(l)): |
|
line = matplotlib.lines.Line2D( |
|
(l[i, 0, 0], l[i, 1, 0]), |
|
(l[i, 0, 1], l[i, 1, 1]), |
|
zorder=1, |
|
c=lc, |
|
linewidth=lw, |
|
alpha=alpha, |
|
) |
|
a.add_line(line) |
|
pts = l.reshape(-1, 2) |
|
a.scatter(pts[:, 0], pts[:, 1], c=pc, s=ps, linewidths=0, zorder=2, alpha=alpha) |
|
|
|
|
|
def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)): |
|
"""Plot line matches for existing images with multiple colors. |
|
Args: |
|
lines: list of ndarrays of size (N, 2, 2). |
|
correct_matches: bool array of size (N,) indicating correct matches. |
|
lw: line width as float pixels. |
|
indices: indices of the images to draw the matches on. |
|
""" |
|
n_lines = len(lines[0]) |
|
colors = sns.color_palette("husl", n_colors=n_lines) |
|
np.random.shuffle(colors) |
|
alphas = np.ones(n_lines) |
|
|
|
if correct_matches is not None: |
|
alphas[~np.array(correct_matches)] = 0.2 |
|
|
|
fig = plt.gcf() |
|
ax = fig.axes |
|
assert len(ax) > max(indices) |
|
axes = [ax[i] for i in indices] |
|
fig.canvas.draw() |
|
|
|
|
|
for a, l in zip(axes, lines): |
|
|
|
transFigure = fig.transFigure.inverted() |
|
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0])) |
|
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1])) |
|
fig.lines += [ |
|
matplotlib.lines.Line2D( |
|
(endpoint0[i, 0], endpoint1[i, 0]), |
|
(endpoint0[i, 1], endpoint1[i, 1]), |
|
zorder=1, |
|
transform=fig.transFigure, |
|
c=colors[i], |
|
alpha=alphas[i], |
|
linewidth=lw, |
|
) |
|
for i in range(n_lines) |
|
] |
|
|