|
import torch |
|
import numpy as np |
|
|
|
|
|
def batch_episym(x1, x2, F): |
|
batch_size, num_pts = x1.shape[0], x1.shape[1] |
|
x1 = torch.cat([x1, x1.new_ones(batch_size, num_pts, 1)], dim=-1).reshape( |
|
batch_size, num_pts, 3, 1 |
|
) |
|
x2 = torch.cat([x2, x2.new_ones(batch_size, num_pts, 1)], dim=-1).reshape( |
|
batch_size, num_pts, 3, 1 |
|
) |
|
F = F.reshape(-1, 1, 3, 3).repeat(1, num_pts, 1, 1) |
|
x2Fx1 = torch.matmul(x2.transpose(2, 3), torch.matmul(F, x1)).reshape( |
|
batch_size, num_pts |
|
) |
|
Fx1 = torch.matmul(F, x1).reshape(batch_size, num_pts, 3) |
|
Ftx2 = torch.matmul(F.transpose(2, 3), x2).reshape(batch_size, num_pts, 3) |
|
ys = ( |
|
x2Fx1**2 |
|
* ( |
|
1.0 / (Fx1[:, :, 0] ** 2 + Fx1[:, :, 1] ** 2 + 1e-15) |
|
+ 1.0 / (Ftx2[:, :, 0] ** 2 + Ftx2[:, :, 1] ** 2 + 1e-15) |
|
) |
|
).sqrt() |
|
return ys |
|
|
|
|
|
def CELoss(seed_x1, seed_x2, e, confidence, inlier_th, batch_mask=1): |
|
|
|
ys = batch_episym(seed_x1, seed_x2, e) |
|
mask_pos, mask_neg = (ys <= inlier_th).float(), (ys > inlier_th).float() |
|
num_pos, num_neg = ( |
|
torch.relu(torch.sum(mask_pos, dim=1) - 1.0) + 1.0, |
|
torch.relu(torch.sum(mask_neg, dim=1) - 1.0) + 1.0, |
|
) |
|
loss_pos, loss_neg = ( |
|
-torch.log(abs(confidence) + 1e-8) * mask_pos, |
|
-torch.log(abs(1 - confidence) + 1e-8) * mask_neg, |
|
) |
|
classif_loss = torch.mean( |
|
loss_pos * 0.5 / num_pos.unsqueeze(-1) + loss_neg * 0.5 / num_neg.unsqueeze(-1), |
|
dim=-1, |
|
) |
|
classif_loss = classif_loss * batch_mask |
|
classif_loss = classif_loss.mean() |
|
precision = torch.mean( |
|
torch.sum((confidence > 0.5).type(confidence.type()) * mask_pos, dim=1) |
|
/ (torch.sum((confidence > 0.5).type(confidence.type()), dim=1) + 1e-8) |
|
) |
|
recall = torch.mean( |
|
torch.sum((confidence > 0.5).type(confidence.type()) * mask_pos, dim=1) |
|
/ num_pos |
|
) |
|
return classif_loss, precision, recall |
|
|
|
|
|
def CorrLoss(desc_mat, batch_num_corr, batch_num_incorr1, batch_num_incorr2): |
|
total_loss_corr, total_loss_incorr = 0, 0 |
|
total_acc_corr, total_acc_incorr = 0, 0 |
|
batch_size = desc_mat.shape[0] |
|
log_p = torch.log(abs(desc_mat) + 1e-8) |
|
|
|
for i in range(batch_size): |
|
cur_log_p = log_p[i] |
|
num_corr = batch_num_corr[i] |
|
num_incorr1, num_incorr2 = batch_num_incorr1[i], batch_num_incorr2[i] |
|
|
|
|
|
loss_corr = -torch.diag(cur_log_p)[:num_corr].mean() |
|
loss_incorr = ( |
|
-cur_log_p[num_corr : num_corr + num_incorr1, -1].mean() |
|
- cur_log_p[-1, num_corr : num_corr + num_incorr2].mean() |
|
) / 2 |
|
|
|
value_row, row_index = torch.max(desc_mat[i, :-1, :-1], dim=-1) |
|
value_col, col_index = torch.max(desc_mat[i, :-1, :-1], dim=-2) |
|
acc_incorr = ( |
|
(value_row[num_corr : num_corr + num_incorr1] < 0.2).float().mean() |
|
+ (value_col[num_corr : num_corr + num_incorr2] < 0.2).float().mean() |
|
) / 2 |
|
|
|
acc_row_mask = row_index[:num_corr] == torch.arange(num_corr).cuda() |
|
acc_col_mask = col_index[:num_corr] == torch.arange(num_corr).cuda() |
|
acc = (acc_col_mask & acc_row_mask).float().mean() |
|
|
|
total_loss_corr += loss_corr |
|
total_loss_incorr += loss_incorr |
|
total_acc_corr += acc |
|
total_acc_incorr += acc_incorr |
|
|
|
total_acc_corr /= batch_size |
|
total_acc_incorr /= batch_size |
|
total_loss_corr /= batch_size |
|
total_loss_incorr /= batch_size |
|
return total_loss_corr, total_loss_incorr, total_acc_corr, total_acc_incorr |
|
|
|
|
|
class SGMLoss: |
|
def __init__(self, config, model_config): |
|
self.config = config |
|
self.model_config = model_config |
|
|
|
def run(self, data, result): |
|
loss_corr, loss_incorr, acc_corr, acc_incorr = CorrLoss( |
|
result["p"], data["num_corr"], data["num_incorr1"], data["num_incorr2"] |
|
) |
|
loss_mid_corr_tower, loss_mid_incorr_tower, acc_mid_tower = [], [], [] |
|
|
|
|
|
for i in range(len(result["mid_p"])): |
|
mid_p = result["mid_p"][i] |
|
loss_mid_corr, loss_mid_incorr, mid_acc_corr, mid_acc_incorr = CorrLoss( |
|
mid_p, data["num_corr"], data["num_incorr1"], data["num_incorr2"] |
|
) |
|
loss_mid_corr_tower.append(loss_mid_corr), loss_mid_incorr_tower.append( |
|
loss_mid_incorr |
|
), acc_mid_tower.append(mid_acc_corr) |
|
if len(result["mid_p"]) != 0: |
|
loss_mid_corr_tower, loss_mid_incorr_tower, acc_mid_tower = ( |
|
torch.stack(loss_mid_corr_tower), |
|
torch.stack(loss_mid_incorr_tower), |
|
torch.stack(acc_mid_tower), |
|
) |
|
else: |
|
loss_mid_corr_tower, loss_mid_incorr_tower, acc_mid_tower = ( |
|
torch.zeros(1).cuda(), |
|
torch.zeros(1).cuda(), |
|
torch.zeros(1).cuda(), |
|
) |
|
|
|
|
|
classif_loss_tower, classif_precision_tower, classif_recall_tower = [], [], [] |
|
for layer in range(len(result["seed_conf"])): |
|
confidence = result["seed_conf"][layer] |
|
seed_index = result["seed_index"][ |
|
(np.asarray(self.model_config.seedlayer) <= layer).nonzero()[0][-1] |
|
] |
|
seed_x1, seed_x2 = data["x1"].gather( |
|
dim=1, index=seed_index[:, :, 0, None].expand(-1, -1, 2) |
|
), data["x2"].gather( |
|
dim=1, index=seed_index[:, :, 1, None].expand(-1, -1, 2) |
|
) |
|
classif_loss, classif_precision, classif_recall = CELoss( |
|
seed_x1, seed_x2, data["e_gt"], confidence, self.config.inlier_th |
|
) |
|
classif_loss_tower.append(classif_loss), classif_precision_tower.append( |
|
classif_precision |
|
), classif_recall_tower.append(classif_recall) |
|
classif_loss, classif_precision_tower, classif_recall_tower = ( |
|
torch.stack(classif_loss_tower).mean(), |
|
torch.stack(classif_precision_tower), |
|
torch.stack(classif_recall_tower), |
|
) |
|
|
|
classif_loss *= self.config.seed_loss_weight |
|
loss_mid_corr_tower *= self.config.mid_loss_weight |
|
loss_mid_incorr_tower *= self.config.mid_loss_weight |
|
total_loss = ( |
|
loss_corr |
|
+ loss_incorr |
|
+ classif_loss |
|
+ loss_mid_corr_tower.sum() |
|
+ loss_mid_incorr_tower.sum() |
|
) |
|
|
|
return { |
|
"loss_corr": loss_corr, |
|
"loss_incorr": loss_incorr, |
|
"acc_corr": acc_corr, |
|
"acc_incorr": acc_incorr, |
|
"loss_seed_conf": classif_loss, |
|
"pre_seed_conf": classif_precision_tower, |
|
"recall_seed_conf": classif_recall_tower, |
|
"loss_corr_mid": loss_mid_corr_tower, |
|
"loss_incorr_mid": loss_mid_incorr_tower, |
|
"mid_acc_corr": acc_mid_tower, |
|
"total_loss": total_loss, |
|
} |
|
|
|
|
|
class SGLoss: |
|
def __init__(self, config, model_config): |
|
self.config = config |
|
self.model_config = model_config |
|
|
|
def run(self, data, result): |
|
loss_corr, loss_incorr, acc_corr, acc_incorr = CorrLoss( |
|
result["p"], data["num_corr"], data["num_incorr1"], data["num_incorr2"] |
|
) |
|
total_loss = loss_corr + loss_incorr |
|
return { |
|
"loss_corr": loss_corr, |
|
"loss_incorr": loss_incorr, |
|
"acc_corr": acc_corr, |
|
"acc_incorr": acc_incorr, |
|
"total_loss": total_loss, |
|
} |
|
|