|
from argparse import Namespace |
|
import os, sys |
|
import torch |
|
import cv2 |
|
from pathlib import Path |
|
|
|
from .base import Viz |
|
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors |
|
|
|
patch2pix_path = Path(__file__).parent / "../../third_party/patch2pix" |
|
sys.path.append(str(patch2pix_path)) |
|
from third_party.patch2pix.utils.eval.model_helper import load_model, estimate_matches |
|
|
|
|
|
class VizPatch2Pix(Viz): |
|
def __init__(self, args): |
|
super().__init__() |
|
|
|
if type(args) == dict: |
|
args = Namespace(**args) |
|
self.imsize = args.imsize |
|
self.match_threshold = args.match_threshold |
|
self.ksize = args.ksize |
|
self.model = load_model(args.ckpt, method="patch2pix") |
|
self.name = "Patch2Pix" |
|
print(f"Initialize {self.name} with image size {self.imsize}") |
|
|
|
def match_and_draw( |
|
self, |
|
data_dict, |
|
root_dir=None, |
|
ground_truth=False, |
|
measure_time=False, |
|
viz_matches=True, |
|
): |
|
img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] |
|
path_img0 = os.path.join(root_dir, img_name0) |
|
path_img1 = os.path.join(root_dir, img_name1) |
|
img0, img1 = cv2.imread(path_img0), cv2.imread(path_img1) |
|
return_m_upscale = True |
|
if str(data_dict["dataset_name"][0]).lower() == "scannet": |
|
|
|
img0 = cv2.resize(img0, tuple(self.imsize)) |
|
img1 = cv2.resize(img1, tuple(self.imsize)) |
|
return_m_upscale = False |
|
outputs = estimate_matches( |
|
self.model, |
|
path_img0, |
|
path_img1, |
|
ksize=self.ksize, |
|
io_thres=self.match_threshold, |
|
eval_type="fine", |
|
imsize=self.imsize, |
|
return_upscale=return_m_upscale, |
|
measure_time=measure_time, |
|
) |
|
if measure_time: |
|
self.time_stats.append(outputs[-1]) |
|
matches, mconf = outputs[0], outputs[1] |
|
kpts0 = matches[:, :2] |
|
kpts1 = matches[:, 2:4] |
|
|
|
if viz_matches: |
|
saved_name = "_".join( |
|
[ |
|
img_name0.split("/")[-1].split(".")[0], |
|
img_name1.split("/")[-1].split(".")[0], |
|
] |
|
) |
|
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) |
|
if not os.path.exists(folder_matches): |
|
os.makedirs(folder_matches) |
|
path_to_save_matches = os.path.join( |
|
folder_matches, "{}.png".format(saved_name) |
|
) |
|
|
|
if ground_truth: |
|
data_dict["mkpts0_f"] = ( |
|
torch.from_numpy(matches[:, :2]).float().to(self.device) |
|
) |
|
data_dict["mkpts1_f"] = ( |
|
torch.from_numpy(matches[:, 2:4]).float().to(self.device) |
|
) |
|
data_dict["m_bids"] = torch.zeros( |
|
matches.shape[0], device=self.device, dtype=torch.float32 |
|
) |
|
compute_symmetrical_epipolar_errors( |
|
data_dict |
|
) |
|
compute_pose_errors( |
|
data_dict |
|
) |
|
epi_errors = data_dict["epi_errs"].cpu().numpy() |
|
R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] |
|
|
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
epi_errors, |
|
path=path_to_save_matches, |
|
R_errs=R_errors, |
|
t_errs=t_errors, |
|
) |
|
|
|
rel_pair_names = list(zip(*data_dict["pair_names"])) |
|
bs = data_dict["image0"].size(0) |
|
metrics = { |
|
|
|
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], |
|
"epi_errs": [ |
|
data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() |
|
for b in range(bs) |
|
], |
|
"R_errs": data_dict["R_errs"], |
|
"t_errs": data_dict["t_errs"], |
|
"inliers": data_dict["inliers"], |
|
} |
|
self.eval_stats.append({"metrics": metrics}) |
|
else: |
|
m_conf = 1 - mconf |
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
m_conf, |
|
path=path_to_save_matches, |
|
conf_thr=0.4, |
|
) |
|
|