|
from argparse import Namespace |
|
import os |
|
import torch |
|
import cv2 |
|
from time import time |
|
from pathlib import Path |
|
import matplotlib.cm as cm |
|
import numpy as np |
|
|
|
from src.models.topic_fm import TopicFM |
|
from src import get_model_cfg |
|
from .base import Viz |
|
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors |
|
from src.utils.plotting import draw_topics, draw_topicfm_demo, error_colormap |
|
|
|
|
|
class VizTopicFM(Viz): |
|
def __init__(self, args): |
|
super().__init__() |
|
if type(args) == dict: |
|
args = Namespace(**args) |
|
|
|
self.match_threshold = args.match_threshold |
|
self.n_sampling_topics = args.n_sampling_topics |
|
self.show_n_topics = args.show_n_topics |
|
|
|
|
|
conf = dict(get_model_cfg()) |
|
conf["match_coarse"]["thr"] = self.match_threshold |
|
conf["coarse"]["n_samples"] = self.n_sampling_topics |
|
print("model config: ", conf) |
|
self.model = TopicFM(config=conf) |
|
ckpt_dict = torch.load(args.ckpt) |
|
self.model.load_state_dict(ckpt_dict["state_dict"]) |
|
self.model = self.model.eval().to(self.device) |
|
|
|
|
|
|
|
self.name = "TopicFM" |
|
|
|
print(f"Initialize {self.name}") |
|
|
|
def match_and_draw( |
|
self, |
|
data_dict, |
|
root_dir=None, |
|
ground_truth=False, |
|
measure_time=False, |
|
viz_matches=True, |
|
): |
|
if measure_time: |
|
torch.cuda.synchronize() |
|
start = torch.cuda.Event(enable_timing=True) |
|
end = torch.cuda.Event(enable_timing=True) |
|
start.record() |
|
self.model(data_dict) |
|
if measure_time: |
|
torch.cuda.synchronize() |
|
end.record() |
|
torch.cuda.synchronize() |
|
self.time_stats.append(start.elapsed_time(end)) |
|
|
|
kpts0 = data_dict["mkpts0_f"].cpu().numpy() |
|
kpts1 = data_dict["mkpts1_f"].cpu().numpy() |
|
|
|
img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] |
|
img0 = cv2.imread(os.path.join(root_dir, img_name0)) |
|
img1 = cv2.imread(os.path.join(root_dir, img_name1)) |
|
if str(data_dict["dataset_name"][0]).lower() == "scannet": |
|
img0 = cv2.resize(img0, (640, 480)) |
|
img1 = cv2.resize(img1, (640, 480)) |
|
|
|
if viz_matches: |
|
saved_name = "_".join( |
|
[ |
|
img_name0.split("/")[-1].split(".")[0], |
|
img_name1.split("/")[-1].split(".")[0], |
|
] |
|
) |
|
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) |
|
if not os.path.exists(folder_matches): |
|
os.makedirs(folder_matches) |
|
path_to_save_matches = os.path.join( |
|
folder_matches, "{}.png".format(saved_name) |
|
) |
|
|
|
if ground_truth: |
|
compute_symmetrical_epipolar_errors( |
|
data_dict |
|
) |
|
compute_pose_errors( |
|
data_dict |
|
) |
|
epi_errors = data_dict["epi_errs"].cpu().numpy() |
|
R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] |
|
|
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
epi_errors, |
|
path=path_to_save_matches, |
|
R_errs=R_errors, |
|
t_errs=t_errors, |
|
) |
|
|
|
|
|
rel_pair_names = list(zip(*data_dict["pair_names"])) |
|
bs = data_dict["image0"].size(0) |
|
metrics = { |
|
|
|
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], |
|
"epi_errs": [ |
|
data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() |
|
for b in range(bs) |
|
], |
|
"R_errs": data_dict["R_errs"], |
|
"t_errs": data_dict["t_errs"], |
|
"inliers": data_dict["inliers"], |
|
} |
|
self.eval_stats.append({"metrics": metrics}) |
|
else: |
|
m_conf = 1 - data_dict["mconf"].cpu().numpy() |
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
m_conf, |
|
path=path_to_save_matches, |
|
conf_thr=0.4, |
|
) |
|
if self.show_n_topics > 0: |
|
folder_topics = os.path.join( |
|
root_dir, "{}_viz_topics".format(self.name) |
|
) |
|
if not os.path.exists(folder_topics): |
|
os.makedirs(folder_topics) |
|
draw_topics( |
|
data_dict, |
|
img0, |
|
img1, |
|
saved_folder=folder_topics, |
|
show_n_topics=self.show_n_topics, |
|
saved_name=saved_name, |
|
) |
|
|
|
def run_demo( |
|
self, dataloader, writer=None, output_dir=None, no_display=False, skip_frames=1 |
|
): |
|
data_dict = next(dataloader) |
|
|
|
frame_id = 0 |
|
last_image_id = 0 |
|
img0 = ( |
|
np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255 |
|
) |
|
frame_tensor = data_dict["img"].to(self.device) |
|
pair_data = {"image0": frame_tensor} |
|
last_frame = cv2.resize( |
|
img0, (frame_tensor.shape[-1], frame_tensor.shape[-2]), cv2.INTER_LINEAR |
|
) |
|
|
|
if output_dir is not None: |
|
print("==> Will write outputs to {}".format(output_dir)) |
|
Path(output_dir).mkdir(exist_ok=True) |
|
|
|
|
|
if not no_display: |
|
window_name = "Topic-assisted Feature Matching" |
|
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) |
|
cv2.resizeWindow(window_name, (640 * 2, 480 * 2)) |
|
else: |
|
print("Skipping visualization, will not show a GUI.") |
|
|
|
|
|
print( |
|
"==> Keyboard control:\n" |
|
"\tn: select the current frame as the reference image (left)\n" |
|
"\tq: quit" |
|
) |
|
|
|
|
|
|
|
while True: |
|
frame_id += 1 |
|
if frame_id == len(dataloader): |
|
print("Finished demo_loftr.py") |
|
break |
|
data_dict = next(dataloader) |
|
if frame_id % skip_frames != 0: |
|
|
|
continue |
|
|
|
stem0, stem1 = last_image_id, data_dict["id"][0].item() - 1 |
|
frame = ( |
|
np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) |
|
/ 255 |
|
) |
|
|
|
frame_tensor = data_dict["img"].to(self.device) |
|
frame = cv2.resize( |
|
frame, |
|
(frame_tensor.shape[-1], frame_tensor.shape[-2]), |
|
interpolation=cv2.INTER_LINEAR, |
|
) |
|
pair_data = {**pair_data, "image1": frame_tensor} |
|
self.model(pair_data) |
|
|
|
total_n_matches = len(pair_data["mkpts0_f"]) |
|
mkpts0 = pair_data["mkpts0_f"].cpu().numpy() |
|
mkpts1 = pair_data["mkpts1_f"].cpu().numpy() |
|
mconf = pair_data["mconf"].cpu().numpy() |
|
|
|
|
|
if len(mconf) > 0: |
|
mconf = 1 - mconf |
|
|
|
|
|
|
|
color = error_colormap(mconf, thr=0.4, alpha=0.1) |
|
|
|
text = [ |
|
f"Topics", |
|
"#Matches: {}".format(total_n_matches), |
|
] |
|
|
|
out = draw_topicfm_demo( |
|
pair_data, |
|
last_frame, |
|
frame, |
|
mkpts0, |
|
mkpts1, |
|
color, |
|
text, |
|
show_n_topics=4, |
|
path=None, |
|
) |
|
|
|
if not no_display: |
|
if writer is not None: |
|
writer.write(out) |
|
cv2.imshow("TopicFM Matches", out) |
|
key = chr(cv2.waitKey(10) & 0xFF) |
|
if key == "q": |
|
if writer is not None: |
|
writer.release() |
|
print("Exiting...") |
|
break |
|
elif key == "n": |
|
pair_data["image0"] = frame_tensor |
|
last_frame = frame |
|
last_image_id = data_dict["id"][0].item() - 1 |
|
frame_id_left = frame_id |
|
|
|
elif output_dir is not None: |
|
stem = "matches_{:06}_{:06}".format(stem0, stem1) |
|
out_file = str(Path(output_dir, stem + ".png")) |
|
print("\nWriting image to {}".format(out_file)) |
|
cv2.imwrite(out_file, out) |
|
else: |
|
raise ValueError("output_dir is required when no display is given.") |
|
|
|
cv2.destroyAllWindows() |
|
if writer is not None: |
|
writer.release() |
|
|