|
import torch |
|
from fvcore.nn import FlopCountAnalysis |
|
from einops.einops import rearrange |
|
|
|
from src import get_model_cfg |
|
from src.models.backbone import FPN as topicfm_featnet |
|
from src.models.modules import TopicFormer |
|
from src.utils.dataset import read_scannet_gray |
|
|
|
from third_party.loftr.src.loftr.utils.cvpr_ds_config import default_cfg |
|
from third_party.loftr.src.loftr.backbone import ResNetFPN_8_2 as loftr_featnet |
|
from third_party.loftr.src.loftr.loftr_module import LocalFeatureTransformer |
|
|
|
|
|
def feat_net_flops(feat_net, config, input): |
|
model = feat_net(config) |
|
model.eval() |
|
flops = FlopCountAnalysis(model, input) |
|
feat_c, _ = model(input) |
|
return feat_c, flops.total() / 1e9 |
|
|
|
|
|
def coarse_model_flops(coarse_model, config, inputs): |
|
model = coarse_model(config) |
|
model.eval() |
|
flops = FlopCountAnalysis(model, inputs) |
|
return flops.total() / 1e9 |
|
|
|
|
|
if __name__ == "__main__": |
|
path_img0 = "assets/scannet_sample_images/scene0711_00_frame-001680.jpg" |
|
path_img1 = "assets/scannet_sample_images/scene0711_00_frame-001995.jpg" |
|
img0, img1 = read_scannet_gray(path_img0), read_scannet_gray(path_img1) |
|
img0, img1 = img0.unsqueeze(0), img1.unsqueeze(0) |
|
|
|
|
|
loftr_conf = dict(default_cfg) |
|
feat_c0, loftr_featnet_flops0 = feat_net_flops( |
|
loftr_featnet, loftr_conf["resnetfpn"], img0 |
|
) |
|
feat_c1, loftr_featnet_flops1 = feat_net_flops( |
|
loftr_featnet, loftr_conf["resnetfpn"], img1 |
|
) |
|
print( |
|
"FLOPs of feature extraction in LoFTR: {} GFLOPs".format( |
|
(loftr_featnet_flops0 + loftr_featnet_flops1) / 2 |
|
) |
|
) |
|
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") |
|
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") |
|
loftr_coarse_model_flops = coarse_model_flops( |
|
LocalFeatureTransformer, loftr_conf["coarse"], (feat_c0, feat_c1) |
|
) |
|
print( |
|
"FLOPs of coarse matching model in LoFTR: {} GFLOPs".format( |
|
loftr_coarse_model_flops |
|
) |
|
) |
|
|
|
|
|
topicfm_conf = get_model_cfg() |
|
feat_c0, topicfm_featnet_flops0 = feat_net_flops( |
|
topicfm_featnet, topicfm_conf["fpn"], img0 |
|
) |
|
feat_c1, topicfm_featnet_flops1 = feat_net_flops( |
|
topicfm_featnet, topicfm_conf["fpn"], img1 |
|
) |
|
print( |
|
"FLOPs of feature extraction in TopicFM: {} GFLOPs".format( |
|
(topicfm_featnet_flops0 + topicfm_featnet_flops1) / 2 |
|
) |
|
) |
|
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") |
|
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") |
|
topicfm_coarse_model_flops = coarse_model_flops( |
|
TopicFormer, topicfm_conf["coarse"], (feat_c0, feat_c1) |
|
) |
|
print( |
|
"FLOPs of coarse matching model in TopicFM: {} GFLOPs".format( |
|
topicfm_coarse_model_flops |
|
) |
|
) |
|
|