vidimatch / third_party /TopicFM /visualization.py
Vincentqyw
fix: roma
8b973ee
raw
history blame
5.55 kB
#!/usr/bin/env python
# coding: utf-8
import os, glob, cv2
import argparse
from argparse import Namespace
import yaml
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader, SequentialSampler
from src.datasets.custom_dataloader import TestDataLoader
from src.utils.dataset import read_img_gray
from configs.data.base import cfg as data_cfg
import viz
def get_model_config(method_name, dataset_name, root_dir="viz"):
config_file = f"{root_dir}/configs/{method_name}.yml"
with open(config_file, "r") as f:
model_conf = yaml.load(f, Loader=yaml.FullLoader)[dataset_name]
return model_conf
class DemoDataset(Dataset):
def __init__(self, dataset_dir, img_file=None, resize=0, down_factor=16):
self.dataset_dir = dataset_dir
if img_file is None:
self.list_img_files = glob.glob(os.path.join(dataset_dir, "*.*"))
self.list_img_files.sort()
else:
with open(img_file) as f:
self.list_img_files = [
os.path.join(dataset_dir, img_file.strip())
for img_file in f.readlines()
]
self.resize = resize
self.down_factor = down_factor
def __len__(self):
return len(self.list_img_files)
def __getitem__(self, idx):
img_path = self.list_img_files[
idx
] # os.path.join(self.dataset_dir, self.list_img_files[idx])
img, scale = read_img_gray(
img_path, resize=self.resize, down_factor=self.down_factor
)
return {"img": img, "id": idx, "img_path": img_path}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Visualize matches")
parser.add_argument("--gpu", "-gpu", type=str, default="0")
parser.add_argument("--method", type=str, default=None)
parser.add_argument("--dataset_dir", type=str, default="data/aachen-day-night")
parser.add_argument("--pair_dir", type=str, default=None)
parser.add_argument(
"--dataset_name",
type=str,
choices=["megadepth", "scannet", "aachen_v1.1", "inloc"],
default="megadepth",
)
parser.add_argument("--measure_time", action="store_true")
parser.add_argument("--no_viz", action="store_true")
parser.add_argument("--compute_eval_metrics", action="store_true")
parser.add_argument("--run_demo", action="store_true")
args = parser.parse_args()
model_cfg = get_model_config(args.method, args.dataset_name)
class_name = model_cfg["class"]
model = viz.__dict__[class_name](model_cfg)
# all_args = Namespace(**vars(args), **model_cfg)
if not args.run_demo:
if args.dataset_name == "megadepth":
from configs.data.megadepth_test_1500 import cfg
data_cfg.merge_from_other_cfg(cfg)
elif args.dataset_name == "scannet":
from configs.data.scannet_test_1500 import cfg
data_cfg.merge_from_other_cfg(cfg)
elif args.dataset_name == "aachen_v1.1":
data_cfg.merge_from_list(
[
"DATASET.TEST_DATA_SOURCE",
"aachen_v1.1",
"DATASET.TEST_DATA_ROOT",
os.path.join(args.dataset_dir, "images/images_upright"),
"DATASET.TEST_LIST_PATH",
args.pair_dir,
"DATASET.TEST_IMGSIZE",
model_cfg["imsize"],
]
)
elif args.dataset_name == "inloc":
data_cfg.merge_from_list(
[
"DATASET.TEST_DATA_SOURCE",
"inloc",
"DATASET.TEST_DATA_ROOT",
args.dataset_dir,
"DATASET.TEST_LIST_PATH",
args.pair_dir,
"DATASET.TEST_IMGSIZE",
model_cfg["imsize"],
]
)
has_ground_truth = str(data_cfg.DATASET.TEST_DATA_SOURCE).lower() in [
"megadepth",
"scannet",
]
dataloader = TestDataLoader(data_cfg)
with torch.no_grad():
for data_dict in tqdm(dataloader):
for k, v in data_dict.items():
if isinstance(v, torch.Tensor):
data_dict[k] = v.cuda() if torch.cuda.is_available() else v
img_root_dir = data_cfg.DATASET.TEST_DATA_ROOT
model.match_and_draw(
data_dict,
root_dir=img_root_dir,
ground_truth=has_ground_truth,
measure_time=args.measure_time,
viz_matches=(not args.no_viz),
)
if args.measure_time:
print(
"Running time for each image is {} miliseconds".format(
model.measure_time()
)
)
if args.compute_eval_metrics and has_ground_truth:
model.compute_eval_metrics()
else:
demo_dataset = DemoDataset(args.dataset_dir, img_file=args.pair_dir, resize=640)
sampler = SequentialSampler(demo_dataset)
dataloader = DataLoader(demo_dataset, batch_size=1, sampler=sampler)
writer = cv2.VideoWriter(
"topicfm_demo.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
15,
(640 * 2 + 5, 480 * 2 + 10),
)
model.run_demo(
iter(dataloader), writer
) # , output_dir="demo", no_display=True)