|
from argparse import Namespace |
|
import os |
|
import torch |
|
import cv2 |
|
|
|
from .base import Viz |
|
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors |
|
|
|
from third_party.loftr.src.loftr import LoFTR, default_cfg |
|
|
|
|
|
class VizLoFTR(Viz): |
|
def __init__(self, args): |
|
super().__init__() |
|
if type(args) == dict: |
|
args = Namespace(**args) |
|
|
|
self.match_threshold = args.match_threshold |
|
|
|
|
|
conf = dict(default_cfg) |
|
conf["match_coarse"]["thr"] = self.match_threshold |
|
print(conf) |
|
self.model = LoFTR(config=conf) |
|
ckpt_dict = torch.load(args.ckpt) |
|
self.model.load_state_dict(ckpt_dict["state_dict"]) |
|
self.model = self.model.eval().to(self.device) |
|
|
|
|
|
|
|
self.name = "LoFTR" |
|
|
|
print(f"Initialize {self.name}") |
|
|
|
def match_and_draw( |
|
self, |
|
data_dict, |
|
root_dir=None, |
|
ground_truth=False, |
|
measure_time=False, |
|
viz_matches=True, |
|
): |
|
if measure_time: |
|
torch.cuda.synchronize() |
|
start = torch.cuda.Event(enable_timing=True) |
|
end = torch.cuda.Event(enable_timing=True) |
|
start.record() |
|
self.model(data_dict) |
|
if measure_time: |
|
torch.cuda.synchronize() |
|
end.record() |
|
torch.cuda.synchronize() |
|
self.time_stats.append(start.elapsed_time(end)) |
|
|
|
kpts0 = data_dict["mkpts0_f"].cpu().numpy() |
|
kpts1 = data_dict["mkpts1_f"].cpu().numpy() |
|
|
|
img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] |
|
img0 = cv2.imread(os.path.join(root_dir, img_name0)) |
|
img1 = cv2.imread(os.path.join(root_dir, img_name1)) |
|
if str(data_dict["dataset_name"][0]).lower() == "scannet": |
|
img0 = cv2.resize(img0, (640, 480)) |
|
img1 = cv2.resize(img1, (640, 480)) |
|
|
|
if viz_matches: |
|
saved_name = "_".join( |
|
[ |
|
img_name0.split("/")[-1].split(".")[0], |
|
img_name1.split("/")[-1].split(".")[0], |
|
] |
|
) |
|
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) |
|
if not os.path.exists(folder_matches): |
|
os.makedirs(folder_matches) |
|
path_to_save_matches = os.path.join( |
|
folder_matches, "{}.png".format(saved_name) |
|
) |
|
if ground_truth: |
|
compute_symmetrical_epipolar_errors( |
|
data_dict |
|
) |
|
compute_pose_errors( |
|
data_dict |
|
) |
|
epi_errors = data_dict["epi_errs"].cpu().numpy() |
|
R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] |
|
|
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
epi_errors, |
|
path=path_to_save_matches, |
|
R_errs=R_errors, |
|
t_errs=t_errors, |
|
) |
|
|
|
rel_pair_names = list(zip(*data_dict["pair_names"])) |
|
bs = data_dict["image0"].size(0) |
|
metrics = { |
|
|
|
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], |
|
"epi_errs": [ |
|
data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() |
|
for b in range(bs) |
|
], |
|
"R_errs": data_dict["R_errs"], |
|
"t_errs": data_dict["t_errs"], |
|
"inliers": data_dict["inliers"], |
|
} |
|
self.eval_stats.append({"metrics": metrics}) |
|
else: |
|
m_conf = 1 - data_dict["mconf"].cpu().numpy() |
|
self.draw_matches( |
|
kpts0, |
|
kpts1, |
|
img0, |
|
img1, |
|
m_conf, |
|
path=path_to_save_matches, |
|
conf_thr=0.4, |
|
) |
|
|