|
import argparse |
|
import gradio as gr |
|
|
|
from hloc import extract_features |
|
from extra_utils.utils import ( |
|
matcher_zoo, |
|
device, |
|
match_dense, |
|
match_features, |
|
get_model, |
|
get_feature_model, |
|
display_matches |
|
) |
|
|
|
def run_matching( |
|
match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1 |
|
): |
|
|
|
if image0 is None or image1 is None: |
|
raise gr.Error("Error: No images found! Please upload two images.") |
|
|
|
model = matcher_zoo[key] |
|
match_conf = model["config"] |
|
|
|
match_conf["model"]["match_threshold"] = match_threshold |
|
match_conf["model"]["max_keypoints"] = extract_max_keypoints |
|
|
|
matcher = get_model(match_conf) |
|
if model["dense"]: |
|
pred = match_dense.match_images( |
|
matcher, image0, image1, match_conf["preprocessing"], device=device |
|
) |
|
del matcher |
|
extract_conf = None |
|
else: |
|
extract_conf = model["config_feature"] |
|
|
|
extract_conf["model"]["max_keypoints"] = extract_max_keypoints |
|
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold |
|
extractor = get_feature_model(extract_conf) |
|
pred0 = extract_features.extract( |
|
extractor, image0, extract_conf["preprocessing"] |
|
) |
|
pred1 = extract_features.extract( |
|
extractor, image1, extract_conf["preprocessing"] |
|
) |
|
pred = match_features.match_images(matcher, pred0, pred1) |
|
del extractor |
|
fig, num_inliers = display_matches(pred) |
|
del pred |
|
return ( |
|
fig, |
|
{"matches number": num_inliers}, |
|
{"match_conf": match_conf, "extractor_conf": extract_conf}, |
|
) |
|
|
|
|
|
def ui_change_imagebox(choice): |
|
return {"value": None, "source": choice, "__type__": "update"} |
|
|
|
|
|
def ui_reset_state( |
|
match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1 |
|
): |
|
match_threshold = 0.2 |
|
extract_max_keypoints = 1000 |
|
keypoint_threshold = 0.015 |
|
key = list(matcher_zoo.keys())[0] |
|
image0 = None |
|
image1 = None |
|
return ( |
|
match_threshold, |
|
extract_max_keypoints, |
|
keypoint_threshold, |
|
key, |
|
image0, |
|
image1, |
|
{"value": None, "source": "upload", "__type__": "update"}, |
|
{"value": None, "source": "upload", "__type__": "update"}, |
|
"upload", |
|
None, |
|
{}, |
|
{}, |
|
) |
|
|
|
|
|
def run(config): |
|
with gr.Blocks( |
|
theme=gr.themes.Monochrome(), css="footer {visibility: hidden}" |
|
) as app: |
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<h1 align="center">Image Matching WebUI</h1> |
|
</p> |
|
""" |
|
) |
|
|
|
with gr.Row(equal_height=False): |
|
with gr.Column(): |
|
with gr.Row(): |
|
matcher_list = gr.Dropdown( |
|
choices=list(matcher_zoo.keys()), |
|
value="disk+lightglue", |
|
label="Matching Model", |
|
interactive=True, |
|
) |
|
match_image_src = gr.Radio( |
|
["upload", "webcam", "canvas"], |
|
label="Image Source", |
|
value="upload", |
|
) |
|
|
|
with gr.Row(): |
|
match_setting_threshold = gr.Slider( |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.001, |
|
label="Match threshold", |
|
value=0.1, |
|
) |
|
match_setting_max_features = gr.Slider( |
|
minimum=10, |
|
maximum=10000, |
|
step=10, |
|
label="Max number of features", |
|
value=1000, |
|
) |
|
|
|
with gr.Row(): |
|
detect_keypoints_threshold = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.001, |
|
label="Keypoint threshold", |
|
value=0.015, |
|
) |
|
detect_line_threshold = gr.Slider( |
|
minimum=0.1, |
|
maximum=1, |
|
step=0.01, |
|
label="Line threshold", |
|
value=0.2, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
input_image0 = gr.Image( |
|
label="Image 0", |
|
type="numpy", |
|
interactive=True, |
|
image_mode="RGB", |
|
) |
|
input_image1 = gr.Image( |
|
label="Image 1", |
|
type="numpy", |
|
interactive=True, |
|
image_mode="RGB", |
|
) |
|
|
|
with gr.Row(): |
|
button_reset = gr.Button(label="Reset", value="Reset") |
|
button_run = gr.Button( |
|
label="Run Match", value="Run Match", variant="primary" |
|
) |
|
|
|
with gr.Accordion("Open for More!", open=False): |
|
gr.Markdown( |
|
f""" |
|
<h3>Supported Algorithms</h3> |
|
{", ".join(matcher_zoo.keys())} |
|
""" |
|
) |
|
|
|
|
|
inputs = [ |
|
match_setting_threshold, |
|
match_setting_max_features, |
|
detect_keypoints_threshold, |
|
matcher_list, |
|
input_image0, |
|
input_image1, |
|
] |
|
|
|
|
|
with gr.Row(): |
|
examples = [ |
|
[ |
|
0.1, |
|
2000, |
|
0.015, |
|
"disk+lightglue", |
|
"datasets/sacre_coeur/mapping/71295362_4051449754.jpg", |
|
"datasets/sacre_coeur/mapping/93341989_396310999.jpg", |
|
], |
|
[ |
|
0.1, |
|
2000, |
|
0.015, |
|
"loftr", |
|
"datasets/sacre_coeur/mapping/03903474_1471484089.jpg", |
|
"datasets/sacre_coeur/mapping/02928139_3448003521.jpg", |
|
], |
|
[ |
|
0.1, |
|
2000, |
|
0.015, |
|
"disk", |
|
"datasets/sacre_coeur/mapping/10265353_3838484249.jpg", |
|
"datasets/sacre_coeur/mapping/51091044_3486849416.jpg", |
|
], |
|
[ |
|
0.1, |
|
2000, |
|
0.015, |
|
"topicfm", |
|
"datasets/sacre_coeur/mapping/44120379_8371960244.jpg", |
|
"datasets/sacre_coeur/mapping/93341989_396310999.jpg", |
|
], |
|
[ |
|
0.1, |
|
2000, |
|
0.015, |
|
"superpoint+superglue", |
|
"datasets/sacre_coeur/mapping/17295357_9106075285.jpg", |
|
"datasets/sacre_coeur/mapping/44120379_8371960244.jpg", |
|
], |
|
] |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=inputs, |
|
outputs=[], |
|
fn=run_matching, |
|
cache_examples=False, |
|
label="Examples (click one of the images below to Run Match)", |
|
) |
|
|
|
with gr.Column(): |
|
output_mkpts = gr.Image(label="Keypoints Matching", type="numpy") |
|
matches_result_info = gr.JSON(label="Matches Statistics") |
|
matcher_info = gr.JSON(label="Match info") |
|
|
|
|
|
match_image_src.change( |
|
fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image0 |
|
) |
|
match_image_src.change( |
|
fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image1 |
|
) |
|
|
|
|
|
outputs = [ |
|
output_mkpts, |
|
matches_result_info, |
|
matcher_info, |
|
] |
|
|
|
button_run.click(fn=run_matching, inputs=inputs, outputs=outputs) |
|
|
|
|
|
reset_outputs = [ |
|
match_setting_threshold, |
|
match_setting_max_features, |
|
detect_keypoints_threshold, |
|
matcher_list, |
|
input_image0, |
|
input_image1, |
|
input_image0, |
|
input_image1, |
|
match_image_src, |
|
output_mkpts, |
|
matches_result_info, |
|
matcher_info, |
|
] |
|
button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs) |
|
|
|
app.launch(share=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--config_path", type=str, default="config.yaml", help="configuration file path" |
|
) |
|
args = parser.parse_args() |
|
config = None |
|
run(config) |
|
|