|
import sys |
|
from pathlib import Path |
|
import subprocess |
|
import torch |
|
|
|
from ..utils.base_model import BaseModel |
|
|
|
d2net_path = Path(__file__).parent / "../../third_party/d2net" |
|
sys.path.append(str(d2net_path)) |
|
from lib.model_test import D2Net as _D2Net |
|
from lib.pyramid import process_multiscale |
|
|
|
|
|
class D2Net(BaseModel): |
|
default_conf = { |
|
"model_name": "d2_tf.pth", |
|
"checkpoint_dir": d2net_path / "models", |
|
"use_relu": True, |
|
"multiscale": False, |
|
"max_keypoints": 1024, |
|
} |
|
required_inputs = ["image"] |
|
|
|
def _init(self, conf): |
|
model_file = conf["checkpoint_dir"] / conf["model_name"] |
|
if not model_file.exists(): |
|
model_file.parent.mkdir(exist_ok=True) |
|
cmd = [ |
|
"wget", |
|
"https://dsmn.ml/files/d2-net/" + conf["model_name"], |
|
"-O", |
|
str(model_file), |
|
] |
|
subprocess.run(cmd, check=True) |
|
|
|
self.net = _D2Net( |
|
model_file=model_file, use_relu=conf["use_relu"], use_cuda=False |
|
) |
|
|
|
def _forward(self, data): |
|
image = data["image"] |
|
image = image.flip(1) |
|
norm = image.new_tensor([103.939, 116.779, 123.68]) |
|
image = image * 255 - norm.view(1, 3, 1, 1) |
|
|
|
if self.conf["multiscale"]: |
|
keypoints, scores, descriptors = process_multiscale(image, self.net) |
|
else: |
|
keypoints, scores, descriptors = process_multiscale( |
|
image, self.net, scales=[1] |
|
) |
|
keypoints = keypoints[:, [1, 0]] |
|
|
|
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] |
|
keypoints = keypoints[idxs, :2] |
|
descriptors = descriptors[idxs] |
|
scores = scores[idxs] |
|
|
|
return { |
|
"keypoints": torch.from_numpy(keypoints)[None], |
|
"scores": torch.from_numpy(scores)[None], |
|
"descriptors": torch.from_numpy(descriptors.T)[None], |
|
} |
|
|