Vincentqyw
update
1688294
raw
history blame
6.77 kB
import torch
import torch.nn as nn
from torchvision import transforms
from einops.einops import rearrange
from .backbone import build_backbone
from .utils.position_encoding import PositionEncodingSine
from .aspan_module import (
LocalFeatureTransformer_Flow,
LocalFeatureTransformer,
FinePreprocess,
)
from .utils.coarse_matching import CoarseMatching
from .utils.fine_matching import FineMatching
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ASpanFormer(nn.Module):
def __init__(self, config):
super().__init__()
# Misc
self.config = config
# Modules
self.backbone = build_backbone(config)
self.pos_encoding = PositionEncodingSine(
config["coarse"]["d_model"],
pre_scaling=[config["coarse"]["train_res"], config["coarse"]["test_res"]],
)
self.loftr_coarse = LocalFeatureTransformer_Flow(config["coarse"])
self.coarse_matching = CoarseMatching(config["match_coarse"])
self.fine_preprocess = FinePreprocess(config)
self.loftr_fine = LocalFeatureTransformer(config["fine"])
self.fine_matching = FineMatching()
self.coarsest_level = config["coarse"]["coarsest_level"]
def forward(self, data, online_resize=False):
"""
Update:
data (dict): {
'image0': (torch.Tensor): (N, 1, H, W)
'image1': (torch.Tensor): (N, 1, H, W)
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position
'mask1'(optional) : (torch.Tensor): (N, H, W)
}
"""
if online_resize:
assert data["image0"].shape[0] == 1 and data["image1"].shape[1] == 1
self.resize_input(data, self.config["coarse"]["train_res"])
else:
data["pos_scale0"], data["pos_scale1"] = None, None
# 1. Local Feature CNN
data.update(
{
"bs": data["image0"].size(0),
"hw0_i": data["image0"].shape[2:],
"hw1_i": data["image1"].shape[2:],
}
)
if data["hw0_i"] == data["hw1_i"]: # faster & better BN convergence
feats_c, feats_f = self.backbone(
torch.cat([data["image0"], data["image1"]], dim=0)
)
(feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split(
data["bs"]
), feats_f.split(data["bs"])
else: # handle different input shapes
(feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone(
data["image0"]
), self.backbone(data["image1"])
data.update(
{
"hw0_c": feat_c0.shape[2:],
"hw1_c": feat_c1.shape[2:],
"hw0_f": feat_f0.shape[2:],
"hw1_f": feat_f1.shape[2:],
}
)
# 2. coarse-level loftr module
# add featmap with positional encoding, then flatten it to sequence [N, HW, C]
[feat_c0, pos_encoding0], [feat_c1, pos_encoding1] = self.pos_encoding(
feat_c0, data["pos_scale0"]
), self.pos_encoding(feat_c1, data["pos_scale1"])
feat_c0 = rearrange(feat_c0, "n c h w -> n c h w ")
feat_c1 = rearrange(feat_c1, "n c h w -> n c h w ")
# TODO:adjust ds
ds0 = [
int(data["hw0_c"][0] / self.coarsest_level[0]),
int(data["hw0_c"][1] / self.coarsest_level[1]),
]
ds1 = [
int(data["hw1_c"][0] / self.coarsest_level[0]),
int(data["hw1_c"][1] / self.coarsest_level[1]),
]
if online_resize:
ds0, ds1 = [4, 4], [4, 4]
mask_c0 = mask_c1 = None # mask is useful in training
if "mask0" in data:
mask_c0, mask_c1 = data["mask0"].flatten(-2), data["mask1"].flatten(-2)
feat_c0, feat_c1, flow_list = self.loftr_coarse(
feat_c0, feat_c1, pos_encoding0, pos_encoding1, mask_c0, mask_c1, ds0, ds1
)
# 3. match coarse-level and register predicted offset
self.coarse_matching(
feat_c0, feat_c1, flow_list, data, mask_c0=mask_c0, mask_c1=mask_c1
)
# 4. fine-level refinement
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(
feat_f0, feat_f1, feat_c0, feat_c1, data
)
if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted
feat_f0_unfold, feat_f1_unfold = self.loftr_fine(
feat_f0_unfold, feat_f1_unfold
)
# 5. match fine-level
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data)
# 6. resize match coordinates back to input resolution
if online_resize:
data["mkpts0_f"] *= data["online_resize_scale0"]
data["mkpts1_f"] *= data["online_resize_scale1"]
def load_state_dict(self, state_dict, *args, **kwargs):
for k in list(state_dict.keys()):
if k.startswith("matcher."):
if "sample_offset" in k:
state_dict.pop(k)
else:
state_dict[k.replace("matcher.", "", 1)] = state_dict.pop(k)
return super().load_state_dict(state_dict, *args, **kwargs)
def resize_input(self, data, train_res, df=32):
h0, w0, h1, w1 = (
data["image0"].shape[2],
data["image0"].shape[3],
data["image1"].shape[2],
data["image1"].shape[3],
)
data["image0"], data["image1"] = self.resize_df(
data["image0"], df
), self.resize_df(data["image1"], df)
if len(train_res) == 1:
train_res_h = train_res_w = train_res
else:
train_res_h, train_res_w = train_res[0], train_res[1]
data["pos_scale0"], data["pos_scale1"] = [
train_res_h / data["image0"].shape[2],
train_res_w / data["image0"].shape[3],
], [
train_res_h / data["image1"].shape[2],
train_res_w / data["image1"].shape[3],
]
data["online_resize_scale0"], data["online_resize_scale1"] = (
torch.tensor([w0 / data["image0"].shape[3], h0 / data["image0"].shape[2]])[
None
].to(device),
torch.tensor([w1 / data["image1"].shape[3], h1 / data["image1"].shape[2]])[
None
].to(device),
)
def resize_df(self, image, df=32):
h, w = image.shape[2], image.shape[3]
h_new, w_new = h // df * df, w // df * df
if h != h_new or w != w_new:
img_new = transforms.Resize([h_new, w_new]).forward(image)
else:
img_new = image
return img_new