|
import bisect |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
from copy import deepcopy |
|
|
|
|
|
def _compute_conf_thresh(data): |
|
dataset_name = data["dataset_name"][0].lower() |
|
if dataset_name == "scannet": |
|
thr = 5e-4 |
|
elif dataset_name == "megadepth" or dataset_name == "gl3d": |
|
thr = 1e-4 |
|
else: |
|
raise ValueError(f"Unknown dataset: {dataset_name}") |
|
return thr |
|
|
|
|
|
|
|
|
|
|
|
def make_matching_figure( |
|
img0, |
|
img1, |
|
mkpts0, |
|
mkpts1, |
|
color, |
|
kpts0=None, |
|
kpts1=None, |
|
text=[], |
|
dpi=75, |
|
path=None, |
|
): |
|
|
|
assert ( |
|
mkpts0.shape[0] == mkpts1.shape[0] |
|
), f"mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}" |
|
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) |
|
axes[0].imshow(img0, cmap="gray") |
|
axes[1].imshow(img1, cmap="gray") |
|
for i in range(2): |
|
axes[i].get_yaxis().set_ticks([]) |
|
axes[i].get_xaxis().set_ticks([]) |
|
for spine in axes[i].spines.values(): |
|
spine.set_visible(False) |
|
plt.tight_layout(pad=1) |
|
|
|
if kpts0 is not None: |
|
assert kpts1 is not None |
|
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=2) |
|
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=2) |
|
|
|
|
|
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: |
|
fig.canvas.draw() |
|
transFigure = fig.transFigure.inverted() |
|
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) |
|
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) |
|
fig.lines = [ |
|
matplotlib.lines.Line2D( |
|
(fkpts0[i, 0], fkpts1[i, 0]), |
|
(fkpts0[i, 1], fkpts1[i, 1]), |
|
transform=fig.transFigure, |
|
c=color[i], |
|
linewidth=1, |
|
) |
|
for i in range(len(mkpts0)) |
|
] |
|
|
|
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4) |
|
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4) |
|
|
|
|
|
txt_color = "k" if img0[:100, :200].mean() > 200 else "w" |
|
fig.text( |
|
0.01, |
|
0.99, |
|
"\n".join(text), |
|
transform=fig.axes[0].transAxes, |
|
fontsize=15, |
|
va="top", |
|
ha="left", |
|
color=txt_color, |
|
) |
|
|
|
|
|
if path: |
|
plt.savefig(str(path), bbox_inches="tight", pad_inches=0) |
|
plt.close() |
|
else: |
|
return fig |
|
|
|
|
|
def _make_evaluation_figure(data, b_id, alpha="dynamic"): |
|
b_mask = data["m_bids"] == b_id |
|
conf_thr = _compute_conf_thresh(data) |
|
|
|
img0 = (data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32) |
|
img1 = (data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32) |
|
kpts0 = data["mkpts0_f"][b_mask].cpu().numpy() |
|
kpts1 = data["mkpts1_f"][b_mask].cpu().numpy() |
|
|
|
|
|
if "scale0" in data: |
|
kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]] |
|
kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]] |
|
epi_errs = data["epi_errs"][b_mask].cpu().numpy() |
|
correct_mask = epi_errs < conf_thr |
|
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 |
|
n_correct = np.sum(correct_mask) |
|
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu()) |
|
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) |
|
|
|
|
|
|
|
|
|
if alpha == "dynamic": |
|
alpha = dynamic_alpha(len(correct_mask)) |
|
color = error_colormap(epi_errs, conf_thr, alpha=alpha) |
|
|
|
text = [ |
|
f"#Matches {len(kpts0)}", |
|
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}", |
|
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}", |
|
] |
|
|
|
|
|
figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text) |
|
return figure |
|
|
|
|
|
def _make_evaluation_figure_offset(data, b_id, alpha="dynamic", side=""): |
|
layer_num = data["predict_flow"][0].shape[0] |
|
|
|
b_mask = data["offset_bids" + side] == b_id |
|
conf_thr = 2e-3 |
|
img0 = (data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32) |
|
img1 = (data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32) |
|
|
|
figure_list = [] |
|
|
|
for layer_index in range(layer_num): |
|
l_mask = data["offset_lids" + side] == layer_index |
|
mask = l_mask & b_mask |
|
kpts0 = data["offset_kpts0_f" + side][mask].cpu().numpy() |
|
kpts1 = data["offset_kpts1_f" + side][mask].cpu().numpy() |
|
|
|
epi_errs = data["epi_errs_offset" + side][mask].cpu().numpy() |
|
correct_mask = epi_errs < conf_thr |
|
|
|
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 |
|
n_correct = np.sum(correct_mask) |
|
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu()) |
|
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) |
|
|
|
|
|
|
|
|
|
if alpha == "dynamic": |
|
alpha = dynamic_alpha(len(correct_mask)) |
|
color = error_colormap(epi_errs, conf_thr, alpha=alpha) |
|
|
|
text = [ |
|
f"#Matches {len(kpts0)}", |
|
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}", |
|
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}", |
|
] |
|
|
|
|
|
|
|
figure = make_matching_figure( |
|
deepcopy(img0), deepcopy(img1), kpts0, kpts1, color, text=text |
|
) |
|
figure_list.append(figure) |
|
return figure |
|
|
|
|
|
def _make_confidence_figure(data, b_id): |
|
|
|
raise NotImplementedError() |
|
|
|
|
|
def make_matching_figures(data, config, mode="evaluation"): |
|
"""Make matching figures for a batch. |
|
|
|
Args: |
|
data (Dict): a batch updated by PL_LoFTR. |
|
config (Dict): matcher config |
|
Returns: |
|
figures (Dict[str, List[plt.figure]] |
|
""" |
|
assert mode in ["evaluation", "confidence"] |
|
figures = {mode: []} |
|
for b_id in range(data["image0"].size(0)): |
|
if mode == "evaluation": |
|
fig = _make_evaluation_figure( |
|
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA |
|
) |
|
elif mode == "confidence": |
|
fig = _make_confidence_figure(data, b_id) |
|
else: |
|
raise ValueError(f"Unknown plot mode: {mode}") |
|
figures[mode].append(fig) |
|
return figures |
|
|
|
|
|
def make_matching_figures_offset(data, config, mode="evaluation", side=""): |
|
"""Make matching figures for a batch. |
|
|
|
Args: |
|
data (Dict): a batch updated by PL_LoFTR. |
|
config (Dict): matcher config |
|
Returns: |
|
figures (Dict[str, List[plt.figure]] |
|
""" |
|
assert mode in ["evaluation", "confidence"] |
|
figures = {mode: []} |
|
for b_id in range(data["image0"].size(0)): |
|
if mode == "evaluation": |
|
fig = _make_evaluation_figure_offset( |
|
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA, side=side |
|
) |
|
elif mode == "confidence": |
|
fig = _make_evaluation_figure_offset(data, b_id) |
|
else: |
|
raise ValueError(f"Unknown plot mode: {mode}") |
|
figures[mode].append(fig) |
|
return figures |
|
|
|
|
|
def dynamic_alpha( |
|
n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2] |
|
): |
|
if n_matches == 0: |
|
return 1.0 |
|
ranges = list(zip(alphas, alphas[1:] + [None])) |
|
loc = bisect.bisect_right(milestones, n_matches) - 1 |
|
_range = ranges[loc] |
|
if _range[1] is None: |
|
return _range[0] |
|
return _range[1] + (milestones[loc + 1] - n_matches) / ( |
|
milestones[loc + 1] - milestones[loc] |
|
) * (_range[0] - _range[1]) |
|
|
|
|
|
def error_colormap(err, thr, alpha=1.0): |
|
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" |
|
x = 1 - np.clip(err / (thr * 2), 0, 1) |
|
return np.clip( |
|
np.stack([2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1), |
|
0, |
|
1, |
|
) |
|
|