Vincentqyw
add: roma
62c7319
raw
history blame
6.55 kB
import os
import random
from PIL import Image
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from dkm.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops
import torchvision.transforms.functional as tvf
from dkm.utils.transforms import GeometricSequential
import kornia.augmentation as K
class MegadepthScene:
def __init__(
self,
data_root,
scene_info,
ht=384,
wt=512,
min_overlap=0.0,
shake_t=0,
rot_prob=0.0,
normalize=True,
) -> None:
self.data_root = data_root
self.image_paths = scene_info["image_paths"]
self.depth_paths = scene_info["depth_paths"]
self.intrinsics = scene_info["intrinsics"]
self.poses = scene_info["poses"]
self.pairs = scene_info["pairs"]
self.overlaps = scene_info["overlaps"]
threshold = self.overlaps > min_overlap
self.pairs = self.pairs[threshold]
self.overlaps = self.overlaps[threshold]
if len(self.pairs) > 100000:
pairinds = np.random.choice(
np.arange(0, len(self.pairs)), 100000, replace=False
)
self.pairs = self.pairs[pairinds]
self.overlaps = self.overlaps[pairinds]
# counts, bins = np.histogram(self.overlaps,20)
# print(counts)
self.im_transform_ops = get_tuple_transform_ops(
resize=(ht, wt), normalize=normalize
)
self.depth_transform_ops = get_depth_tuple_transform_ops(
resize=(ht, wt), normalize=False
)
self.wt, self.ht = wt, ht
self.shake_t = shake_t
self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob))
def load_im(self, im_ref, crop=None):
im = Image.open(im_ref)
return im
def load_depth(self, depth_ref, crop=None):
depth = np.array(h5py.File(depth_ref, "r")["depth"])
return torch.from_numpy(depth)
def __len__(self):
return len(self.pairs)
def scale_intrinsic(self, K, wi, hi):
sx, sy = self.wt / wi, self.ht / hi
sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])
return sK @ K
def rand_shake(self, *things):
t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2)
return [
tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0])
for thing in things
], t
def __getitem__(self, pair_idx):
# read intrinsics of original size
idx1, idx2 = self.pairs[pair_idx]
K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3)
K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3)
# read and compute relative poses
T1 = self.poses[idx1]
T2 = self.poses[idx2]
T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[
:4, :4
] # (4, 4)
# Load positive pair data
im1, im2 = self.image_paths[idx1], self.image_paths[idx2]
depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2]
im_src_ref = os.path.join(self.data_root, im1)
im_pos_ref = os.path.join(self.data_root, im2)
depth_src_ref = os.path.join(self.data_root, depth1)
depth_pos_ref = os.path.join(self.data_root, depth2)
# return torch.randn((1000,1000))
im_src = self.load_im(im_src_ref)
im_pos = self.load_im(im_pos_ref)
depth_src = self.load_depth(depth_src_ref)
depth_pos = self.load_depth(depth_pos_ref)
# Recompute camera intrinsic matrix due to the resize
K1 = self.scale_intrinsic(K1, im_src.width, im_src.height)
K2 = self.scale_intrinsic(K2, im_pos.width, im_pos.height)
# Process images
im_src, im_pos = self.im_transform_ops((im_src, im_pos))
depth_src, depth_pos = self.depth_transform_ops(
(depth_src[None, None], depth_pos[None, None])
)
[im_src, im_pos, depth_src, depth_pos], t = self.rand_shake(
im_src, im_pos, depth_src, depth_pos
)
im_src, Hq = self.H_generator(im_src[None])
depth_src = self.H_generator.apply_transform(depth_src, Hq)
K1[:2, 2] += t
K2[:2, 2] += t
K1 = Hq[0] @ K1
data_dict = {
"query": im_src[0],
"query_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0],
"support": im_pos,
"support_identifier": self.image_paths[idx2]
.split("/")[-1]
.split(".jpg")[0],
"query_depth": depth_src[0, 0],
"support_depth": depth_pos[0, 0],
"K1": K1,
"K2": K2,
"T_1to2": T_1to2,
}
return data_dict
class MegadepthBuilder:
def __init__(self, data_root="data/megadepth") -> None:
self.data_root = data_root
self.scene_info_root = os.path.join(data_root, "prep_scene_info")
self.all_scenes = os.listdir(self.scene_info_root)
self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"]
self.test_scenes_loftr = ["0015.npy", "0022.npy"]
def build_scenes(self, split="train", min_overlap=0.0, **kwargs):
if split == "train":
scene_names = set(self.all_scenes) - set(self.test_scenes)
elif split == "train_loftr":
scene_names = set(self.all_scenes) - set(self.test_scenes_loftr)
elif split == "test":
scene_names = self.test_scenes
elif split == "test_loftr":
scene_names = self.test_scenes_loftr
else:
raise ValueError(f"Split {split} not available")
scenes = []
for scene_name in scene_names:
scene_info = np.load(
os.path.join(self.scene_info_root, scene_name), allow_pickle=True
).item()
scenes.append(
MegadepthScene(
self.data_root, scene_info, min_overlap=min_overlap, **kwargs
)
)
return scenes
def weight_scenes(self, concat_dataset, alpha=0.5):
ns = []
for d in concat_dataset.datasets:
ns.append(len(d))
ws = torch.cat([torch.ones(n) / n**alpha for n in ns])
return ws
if __name__ == "__main__":
mega_test = ConcatDataset(MegadepthBuilder().build_scenes(split="train"))
mega_test[0]