|
import os |
|
import random |
|
from PIL import Image |
|
import h5py |
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader, ConcatDataset |
|
|
|
from dkm.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops |
|
import torchvision.transforms.functional as tvf |
|
from dkm.utils.transforms import GeometricSequential |
|
import kornia.augmentation as K |
|
|
|
|
|
class MegadepthScene: |
|
def __init__( |
|
self, |
|
data_root, |
|
scene_info, |
|
ht=384, |
|
wt=512, |
|
min_overlap=0.0, |
|
shake_t=0, |
|
rot_prob=0.0, |
|
normalize=True, |
|
) -> None: |
|
self.data_root = data_root |
|
self.image_paths = scene_info["image_paths"] |
|
self.depth_paths = scene_info["depth_paths"] |
|
self.intrinsics = scene_info["intrinsics"] |
|
self.poses = scene_info["poses"] |
|
self.pairs = scene_info["pairs"] |
|
self.overlaps = scene_info["overlaps"] |
|
threshold = self.overlaps > min_overlap |
|
self.pairs = self.pairs[threshold] |
|
self.overlaps = self.overlaps[threshold] |
|
if len(self.pairs) > 100000: |
|
pairinds = np.random.choice( |
|
np.arange(0, len(self.pairs)), 100000, replace=False |
|
) |
|
self.pairs = self.pairs[pairinds] |
|
self.overlaps = self.overlaps[pairinds] |
|
|
|
|
|
self.im_transform_ops = get_tuple_transform_ops( |
|
resize=(ht, wt), normalize=normalize |
|
) |
|
self.depth_transform_ops = get_depth_tuple_transform_ops( |
|
resize=(ht, wt), normalize=False |
|
) |
|
self.wt, self.ht = wt, ht |
|
self.shake_t = shake_t |
|
self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob)) |
|
|
|
def load_im(self, im_ref, crop=None): |
|
im = Image.open(im_ref) |
|
return im |
|
|
|
def load_depth(self, depth_ref, crop=None): |
|
depth = np.array(h5py.File(depth_ref, "r")["depth"]) |
|
return torch.from_numpy(depth) |
|
|
|
def __len__(self): |
|
return len(self.pairs) |
|
|
|
def scale_intrinsic(self, K, wi, hi): |
|
sx, sy = self.wt / wi, self.ht / hi |
|
sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]]) |
|
return sK @ K |
|
|
|
def rand_shake(self, *things): |
|
t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2) |
|
return [ |
|
tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0]) |
|
for thing in things |
|
], t |
|
|
|
def __getitem__(self, pair_idx): |
|
|
|
idx1, idx2 = self.pairs[pair_idx] |
|
K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3) |
|
K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3) |
|
|
|
|
|
T1 = self.poses[idx1] |
|
T2 = self.poses[idx2] |
|
T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[ |
|
:4, :4 |
|
] |
|
|
|
|
|
im1, im2 = self.image_paths[idx1], self.image_paths[idx2] |
|
depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2] |
|
im_src_ref = os.path.join(self.data_root, im1) |
|
im_pos_ref = os.path.join(self.data_root, im2) |
|
depth_src_ref = os.path.join(self.data_root, depth1) |
|
depth_pos_ref = os.path.join(self.data_root, depth2) |
|
|
|
im_src = self.load_im(im_src_ref) |
|
im_pos = self.load_im(im_pos_ref) |
|
depth_src = self.load_depth(depth_src_ref) |
|
depth_pos = self.load_depth(depth_pos_ref) |
|
|
|
|
|
K1 = self.scale_intrinsic(K1, im_src.width, im_src.height) |
|
K2 = self.scale_intrinsic(K2, im_pos.width, im_pos.height) |
|
|
|
im_src, im_pos = self.im_transform_ops((im_src, im_pos)) |
|
depth_src, depth_pos = self.depth_transform_ops( |
|
(depth_src[None, None], depth_pos[None, None]) |
|
) |
|
[im_src, im_pos, depth_src, depth_pos], t = self.rand_shake( |
|
im_src, im_pos, depth_src, depth_pos |
|
) |
|
im_src, Hq = self.H_generator(im_src[None]) |
|
depth_src = self.H_generator.apply_transform(depth_src, Hq) |
|
K1[:2, 2] += t |
|
K2[:2, 2] += t |
|
K1 = Hq[0] @ K1 |
|
data_dict = { |
|
"query": im_src[0], |
|
"query_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0], |
|
"support": im_pos, |
|
"support_identifier": self.image_paths[idx2] |
|
.split("/")[-1] |
|
.split(".jpg")[0], |
|
"query_depth": depth_src[0, 0], |
|
"support_depth": depth_pos[0, 0], |
|
"K1": K1, |
|
"K2": K2, |
|
"T_1to2": T_1to2, |
|
} |
|
return data_dict |
|
|
|
|
|
class MegadepthBuilder: |
|
def __init__(self, data_root="data/megadepth") -> None: |
|
self.data_root = data_root |
|
self.scene_info_root = os.path.join(data_root, "prep_scene_info") |
|
self.all_scenes = os.listdir(self.scene_info_root) |
|
self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"] |
|
self.test_scenes_loftr = ["0015.npy", "0022.npy"] |
|
|
|
def build_scenes(self, split="train", min_overlap=0.0, **kwargs): |
|
if split == "train": |
|
scene_names = set(self.all_scenes) - set(self.test_scenes) |
|
elif split == "train_loftr": |
|
scene_names = set(self.all_scenes) - set(self.test_scenes_loftr) |
|
elif split == "test": |
|
scene_names = self.test_scenes |
|
elif split == "test_loftr": |
|
scene_names = self.test_scenes_loftr |
|
else: |
|
raise ValueError(f"Split {split} not available") |
|
scenes = [] |
|
for scene_name in scene_names: |
|
scene_info = np.load( |
|
os.path.join(self.scene_info_root, scene_name), allow_pickle=True |
|
).item() |
|
scenes.append( |
|
MegadepthScene( |
|
self.data_root, scene_info, min_overlap=min_overlap, **kwargs |
|
) |
|
) |
|
return scenes |
|
|
|
def weight_scenes(self, concat_dataset, alpha=0.5): |
|
ns = [] |
|
for d in concat_dataset.datasets: |
|
ns.append(len(d)) |
|
ws = torch.cat([torch.ones(n) / n**alpha for n in ns]) |
|
return ws |
|
|
|
|
|
if __name__ == "__main__": |
|
mega_test = ConcatDataset(MegadepthBuilder().build_scenes(split="train")) |
|
mega_test[0] |
|
|