|
from loguru import logger |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def sample_non_matches(pos_mask, match_ids=None, sampling_ratio=10): |
|
|
|
if match_ids is not None: |
|
HW = pos_mask.shape[1] |
|
b_ids, i_ids, j_ids = match_ids |
|
if len(b_ids) == 0: |
|
return ~pos_mask |
|
|
|
neg_mask = torch.zeros_like(pos_mask) |
|
probs = torch.ones((HW - 1) // 3, device=pos_mask.device) |
|
for _ in range(sampling_ratio): |
|
d = torch.multinomial(probs, len(j_ids), replacement=True) |
|
sampled_j_ids = (j_ids + d * 3 + 1) % HW |
|
neg_mask[b_ids, i_ids, sampled_j_ids] = True |
|
|
|
else: |
|
neg_mask = ~pos_mask |
|
|
|
return neg_mask |
|
|
|
|
|
class TopicFMLoss(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.loss_config = config["model"]["loss"] |
|
self.match_type = self.config["model"]["match_coarse"]["match_type"] |
|
|
|
|
|
self.correct_thr = self.loss_config["fine_correct_thr"] |
|
self.c_pos_w = self.loss_config["pos_weight"] |
|
self.c_neg_w = self.loss_config["neg_weight"] |
|
|
|
self.fine_type = self.loss_config["fine_type"] |
|
|
|
def compute_coarse_loss( |
|
self, conf, topic_mat, conf_gt, match_ids=None, weight=None |
|
): |
|
"""Point-wise CE / Focal Loss with 0 / 1 confidence as gt. |
|
Args: |
|
conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1) |
|
conf_gt (torch.Tensor): (N, HW0, HW1) |
|
weight (torch.Tensor): (N, HW0, HW1) |
|
""" |
|
pos_mask = conf_gt == 1 |
|
neg_mask = sample_non_matches(pos_mask, match_ids=match_ids) |
|
c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w |
|
|
|
if not pos_mask.any(): |
|
pos_mask[0, 0, 0] = True |
|
if weight is not None: |
|
weight[0, 0, 0] = 0.0 |
|
c_pos_w = 0.0 |
|
if not neg_mask.any(): |
|
neg_mask[0, 0, 0] = True |
|
if weight is not None: |
|
weight[0, 0, 0] = 0.0 |
|
c_neg_w = 0.0 |
|
|
|
conf = torch.clamp(conf, 1e-6, 1 - 1e-6) |
|
alpha = self.loss_config["focal_alpha"] |
|
|
|
loss = 0.0 |
|
if isinstance(topic_mat, torch.Tensor): |
|
pos_topic = topic_mat[pos_mask] |
|
loss_pos_topic = -alpha * (pos_topic + 1e-6).log() |
|
neg_topic = topic_mat[neg_mask] |
|
loss_neg_topic = -alpha * (1 - neg_topic + 1e-6).log() |
|
if weight is not None: |
|
loss_pos_topic = loss_pos_topic * weight[pos_mask] |
|
loss_neg_topic = loss_neg_topic * weight[neg_mask] |
|
loss = loss_pos_topic.mean() + loss_neg_topic.mean() |
|
|
|
pos_conf = conf[pos_mask] |
|
loss_pos = -alpha * pos_conf.log() |
|
|
|
if weight is not None: |
|
|
|
|
|
loss_pos = loss_pos * weight[pos_mask] |
|
|
|
loss = loss + c_pos_w * loss_pos.mean() |
|
|
|
return loss |
|
|
|
def compute_fine_loss(self, expec_f, expec_f_gt): |
|
if self.fine_type == "l2_with_std": |
|
return self._compute_fine_loss_l2_std(expec_f, expec_f_gt) |
|
elif self.fine_type == "l2": |
|
return self._compute_fine_loss_l2(expec_f, expec_f_gt) |
|
else: |
|
raise NotImplementedError() |
|
|
|
def _compute_fine_loss_l2(self, expec_f, expec_f_gt): |
|
""" |
|
Args: |
|
expec_f (torch.Tensor): [M, 2] <x, y> |
|
expec_f_gt (torch.Tensor): [M, 2] <x, y> |
|
""" |
|
correct_mask = ( |
|
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr |
|
) |
|
if correct_mask.sum() == 0: |
|
if ( |
|
self.training |
|
): |
|
logger.warning("assign a false supervision to avoid ddp deadlock") |
|
correct_mask[0] = True |
|
else: |
|
return None |
|
offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1) |
|
return offset_l2.mean() |
|
|
|
def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt): |
|
""" |
|
Args: |
|
expec_f (torch.Tensor): [M, 3] <x, y, std> |
|
expec_f_gt (torch.Tensor): [M, 2] <x, y> |
|
""" |
|
|
|
correct_mask = ( |
|
torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr |
|
) |
|
|
|
|
|
std = expec_f[:, 2] |
|
inverse_std = 1.0 / torch.clamp(std, min=1e-10) |
|
weight = ( |
|
inverse_std / torch.mean(inverse_std) |
|
).detach() |
|
|
|
|
|
if not correct_mask.any(): |
|
if ( |
|
self.training |
|
): |
|
|
|
logger.warning("assign a false supervision to avoid ddp deadlock") |
|
correct_mask[0] = True |
|
weight[0] = 0.0 |
|
else: |
|
return None |
|
|
|
|
|
offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum( |
|
-1 |
|
) |
|
loss = (offset_l2 * weight[correct_mask]).mean() |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
def compute_c_weight(self, data): |
|
"""compute element-wise weights for computing coarse-level loss.""" |
|
if "mask0" in data: |
|
c_weight = ( |
|
data["mask0"].flatten(-2)[..., None] |
|
* data["mask1"].flatten(-2)[:, None] |
|
).float() |
|
else: |
|
c_weight = None |
|
return c_weight |
|
|
|
def forward(self, data): |
|
""" |
|
Update: |
|
data (dict): update{ |
|
'loss': [1] the reduced loss across a batch, |
|
'loss_scalars' (dict): loss scalars for tensorboard_record |
|
} |
|
""" |
|
loss_scalars = {} |
|
|
|
c_weight = self.compute_c_weight(data) |
|
|
|
|
|
loss_c = self.compute_coarse_loss( |
|
data["conf_matrix"], |
|
data["topic_matrix"], |
|
data["conf_matrix_gt"], |
|
match_ids=(data["spv_b_ids"], data["spv_i_ids"], data["spv_j_ids"]), |
|
weight=c_weight, |
|
) |
|
loss = loss_c * self.loss_config["coarse_weight"] |
|
loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()}) |
|
|
|
|
|
loss_f = self.compute_fine_loss(data["expec_f"], data["expec_f_gt"]) |
|
if loss_f is not None: |
|
loss += loss_f * self.loss_config["fine_weight"] |
|
loss_scalars.update({"loss_f": loss_f.clone().detach().cpu()}) |
|
else: |
|
assert self.training is False |
|
loss_scalars.update({"loss_f": torch.tensor(1.0)}) |
|
|
|
loss_scalars.update({"loss": loss.clone().detach().cpu()}) |
|
data.update({"loss": loss, "loss_scalars": loss_scalars}) |
|
|