|
import torch |
|
import torch.nn as nn |
|
from einops.einops import rearrange |
|
|
|
from .backbone import build_backbone |
|
from .modules import LocalFeatureTransformer, FinePreprocess, TopicFormer |
|
from .utils.coarse_matching import CoarseMatching |
|
from .utils.fine_matching import FineMatching |
|
|
|
|
|
class TopicFM(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.config = config |
|
|
|
|
|
self.backbone = build_backbone(config) |
|
|
|
self.loftr_coarse = TopicFormer(config["coarse"]) |
|
self.coarse_matching = CoarseMatching(config["match_coarse"]) |
|
self.fine_preprocess = FinePreprocess(config) |
|
self.loftr_fine = LocalFeatureTransformer(config["fine"]) |
|
self.fine_matching = FineMatching() |
|
|
|
def forward(self, data): |
|
""" |
|
Update: |
|
data (dict): { |
|
'image0': (torch.Tensor): (N, 1, H, W) |
|
'image1': (torch.Tensor): (N, 1, H, W) |
|
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position |
|
'mask1'(optional) : (torch.Tensor): (N, H, W) |
|
} |
|
""" |
|
|
|
data.update( |
|
{ |
|
"bs": data["image0"].size(0), |
|
"hw0_i": data["image0"].shape[2:], |
|
"hw1_i": data["image1"].shape[2:], |
|
} |
|
) |
|
|
|
if data["hw0_i"] == data["hw1_i"]: |
|
feats_c, feats_f = self.backbone( |
|
torch.cat([data["image0"], data["image1"]], dim=0) |
|
) |
|
(feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split( |
|
data["bs"] |
|
), feats_f.split(data["bs"]) |
|
else: |
|
(feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone( |
|
data["image0"] |
|
), self.backbone(data["image1"]) |
|
|
|
data.update( |
|
{ |
|
"hw0_c": feat_c0.shape[2:], |
|
"hw1_c": feat_c1.shape[2:], |
|
"hw0_f": feat_f0.shape[2:], |
|
"hw1_f": feat_f1.shape[2:], |
|
} |
|
) |
|
|
|
|
|
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") |
|
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") |
|
|
|
mask_c0 = mask_c1 = None |
|
if "mask0" in data: |
|
mask_c0, mask_c1 = data["mask0"].flatten(-2), data["mask1"].flatten(-2) |
|
|
|
feat_c0, feat_c1, conf_matrix, topic_matrix = self.loftr_coarse( |
|
feat_c0, feat_c1, mask_c0, mask_c1 |
|
) |
|
data.update({"conf_matrix": conf_matrix, "topic_matrix": topic_matrix}) |
|
|
|
|
|
self.coarse_matching(data) |
|
|
|
|
|
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess( |
|
feat_f0, feat_f1, feat_c0.detach(), feat_c1.detach(), data |
|
) |
|
if feat_f0_unfold.size(0) != 0: |
|
feat_f0_unfold, feat_f1_unfold = self.loftr_fine( |
|
feat_f0_unfold, feat_f1_unfold |
|
) |
|
|
|
|
|
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) |
|
|
|
def load_state_dict(self, state_dict, *args, **kwargs): |
|
for k in list(state_dict.keys()): |
|
if k.startswith("matcher."): |
|
state_dict[k.replace("matcher.", "", 1)] = state_dict.pop(k) |
|
return super().load_state_dict(state_dict, *args, **kwargs) |
|
|