|
import torch |
|
import cv2 |
|
import numpy as np |
|
from collections import OrderedDict |
|
from loguru import logger |
|
from kornia.geometry.epipolar import numeric |
|
from kornia.geometry.conversions import convert_points_to_homogeneous |
|
|
|
|
|
|
|
|
|
|
|
def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0): |
|
|
|
t_gt = T_0to1[:3, 3] |
|
n = np.linalg.norm(t) * np.linalg.norm(t_gt) |
|
t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0))) |
|
t_err = np.minimum(t_err, 180 - t_err) |
|
if np.linalg.norm(t_gt) < ignore_gt_t_thr: |
|
t_err = 0 |
|
|
|
|
|
R_gt = T_0to1[:3, :3] |
|
cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2 |
|
cos = np.clip(cos, -1.0, 1.0) |
|
R_err = np.rad2deg(np.abs(np.arccos(cos))) |
|
|
|
return t_err, R_err |
|
|
|
|
|
def symmetric_epipolar_distance(pts0, pts1, E, K0, K1): |
|
"""Squared symmetric epipolar distance. |
|
This can be seen as a biased estimation of the reprojection error. |
|
Args: |
|
pts0 (torch.Tensor): [N, 2] |
|
E (torch.Tensor): [3, 3] |
|
""" |
|
pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] |
|
pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] |
|
pts0 = convert_points_to_homogeneous(pts0) |
|
pts1 = convert_points_to_homogeneous(pts1) |
|
|
|
Ep0 = pts0 @ E.T |
|
p1Ep0 = torch.sum(pts1 * Ep0, -1) |
|
Etp1 = pts1 @ E |
|
|
|
d = p1Ep0**2 * ( |
|
1.0 / (Ep0[:, 0] ** 2 + Ep0[:, 1] ** 2) |
|
+ 1.0 / (Etp1[:, 0] ** 2 + Etp1[:, 1] ** 2) |
|
) |
|
return d |
|
|
|
|
|
def compute_symmetrical_epipolar_errors(data): |
|
""" |
|
Update: |
|
data (dict):{"epi_errs": [M]} |
|
""" |
|
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3]) |
|
E_mat = Tx @ data["T_0to1"][:, :3, :3] |
|
|
|
m_bids = data["m_bids"] |
|
pts0 = data["mkpts0_f"] |
|
pts1 = data["mkpts1_f"] |
|
|
|
epi_errs = [] |
|
for bs in range(Tx.size(0)): |
|
mask = m_bids == bs |
|
epi_errs.append( |
|
symmetric_epipolar_distance( |
|
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs] |
|
) |
|
) |
|
epi_errs = torch.cat(epi_errs, dim=0) |
|
|
|
data.update({"epi_errs": epi_errs}) |
|
|
|
|
|
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999): |
|
if len(kpts0) < 5: |
|
return None |
|
|
|
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] |
|
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] |
|
|
|
|
|
ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]]) |
|
|
|
|
|
E, mask = cv2.findEssentialMat( |
|
kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC |
|
) |
|
if E is None: |
|
print("\nE is None while trying to recover pose.\n") |
|
return None |
|
|
|
|
|
best_num_inliers = 0 |
|
ret = None |
|
for _E in np.split(E, len(E) / 3): |
|
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask) |
|
if n > best_num_inliers: |
|
ret = (R, t[:, 0], mask.ravel() > 0) |
|
best_num_inliers = n |
|
|
|
return ret |
|
|
|
|
|
def compute_pose_errors(data, config=None, ransac_thr=0.5, ransac_conf=0.99999): |
|
""" |
|
Update: |
|
data (dict):{ |
|
"R_errs" List[float]: [N] |
|
"t_errs" List[float]: [N] |
|
"inliers" List[np.ndarray]: [N] |
|
} |
|
""" |
|
pixel_thr = ( |
|
config.TRAINER.RANSAC_PIXEL_THR if config is not None else ransac_thr |
|
) |
|
conf = config.TRAINER.RANSAC_CONF if config is not None else ransac_conf |
|
data.update({"R_errs": [], "t_errs": [], "inliers": []}) |
|
|
|
m_bids = data["m_bids"].cpu().numpy() |
|
pts0 = data["mkpts0_f"].cpu().numpy() |
|
pts1 = data["mkpts1_f"].cpu().numpy() |
|
K0 = data["K0"].cpu().numpy() |
|
K1 = data["K1"].cpu().numpy() |
|
T_0to1 = data["T_0to1"].cpu().numpy() |
|
|
|
for bs in range(K0.shape[0]): |
|
mask = m_bids == bs |
|
ret = estimate_pose( |
|
pts0[mask], pts1[mask], K0[bs], K1[bs], pixel_thr, conf=conf |
|
) |
|
|
|
if ret is None: |
|
data["R_errs"].append(np.inf) |
|
data["t_errs"].append(np.inf) |
|
data["inliers"].append(np.array([]).astype(np.bool)) |
|
else: |
|
R, t, inliers = ret |
|
t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0) |
|
data["R_errs"].append(R_err) |
|
data["t_errs"].append(t_err) |
|
data["inliers"].append(inliers) |
|
|
|
|
|
|
|
|
|
|
|
def error_auc(errors, thresholds): |
|
""" |
|
Args: |
|
errors (list): [N,] |
|
thresholds (list) |
|
""" |
|
errors = [0] + sorted(list(errors)) |
|
recall = list(np.linspace(0, 1, len(errors))) |
|
|
|
aucs = [] |
|
thresholds = [5, 10, 20] |
|
for thr in thresholds: |
|
last_index = np.searchsorted(errors, thr) |
|
y = recall[:last_index] + [recall[last_index - 1]] |
|
x = errors[:last_index] + [thr] |
|
aucs.append(np.trapz(y, x) / thr) |
|
|
|
return {f"auc@{t}": auc for t, auc in zip(thresholds, aucs)} |
|
|
|
|
|
def epidist_prec(errors, thresholds, ret_dict=False): |
|
precs = [] |
|
for thr in thresholds: |
|
prec_ = [] |
|
for errs in errors: |
|
correct_mask = errs < thr |
|
prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0) |
|
precs.append(np.mean(prec_) if len(prec_) > 0 else 0) |
|
if ret_dict: |
|
return {f"prec@{t:.0e}": prec for t, prec in zip(thresholds, precs)} |
|
else: |
|
return precs |
|
|
|
|
|
def aggregate_metrics(metrics, epi_err_thr=5e-4): |
|
"""Aggregate metrics for the whole dataset: |
|
(This method should be called once per dataset) |
|
1. AUC of the pose error (angular) at the threshold [5, 10, 20] |
|
2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth) |
|
""" |
|
|
|
unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics["identifiers"])) |
|
unq_ids = list(unq_ids.values()) |
|
logger.info(f"Aggregating metrics over {len(unq_ids)} unique items...") |
|
|
|
|
|
angular_thresholds = [5, 10, 20] |
|
pose_errors = np.max(np.stack([metrics["R_errs"], metrics["t_errs"]]), axis=0)[ |
|
unq_ids |
|
] |
|
aucs = error_auc(pose_errors, angular_thresholds) |
|
|
|
|
|
dist_thresholds = [epi_err_thr] |
|
precs = epidist_prec( |
|
np.array(metrics["epi_errs"], dtype=object)[unq_ids], dist_thresholds, True |
|
) |
|
|
|
return {**aucs, **precs} |
|
|