|
import logging |
|
import os |
|
import cv2 |
|
import torch |
|
from copy import deepcopy |
|
import torch.nn.functional as F |
|
from torchvision.transforms import ToTensor |
|
import math |
|
|
|
from alnet import ALNet |
|
from soft_detect import DKD |
|
import time |
|
|
|
configs = { |
|
'alike-t': {'c1': 8, 'c2': 16, 'c3': 32, 'c4': 64, 'dim': 64, 'single_head': True, 'radius': 2, |
|
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-t.pth')}, |
|
'alike-s': {'c1': 8, 'c2': 16, 'c3': 48, 'c4': 96, 'dim': 96, 'single_head': True, 'radius': 2, |
|
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-s.pth')}, |
|
'alike-n': {'c1': 16, 'c2': 32, 'c3': 64, 'c4': 128, 'dim': 128, 'single_head': True, 'radius': 2, |
|
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-n.pth')}, |
|
'alike-l': {'c1': 32, 'c2': 64, 'c3': 128, 'c4': 128, 'dim': 128, 'single_head': False, 'radius': 2, |
|
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-l.pth')}, |
|
} |
|
|
|
|
|
class ALike(ALNet): |
|
def __init__(self, |
|
|
|
c1: int = 32, c2: int = 64, c3: int = 128, c4: int = 128, dim: int = 128, |
|
single_head: bool = False, |
|
|
|
radius: int = 2, |
|
top_k: int = 500, scores_th: float = 0.5, |
|
n_limit: int = 5000, |
|
device: str = 'cpu', |
|
model_path: str = '' |
|
): |
|
super().__init__(c1, c2, c3, c4, dim, single_head) |
|
self.radius = radius |
|
self.top_k = top_k |
|
self.n_limit = n_limit |
|
self.scores_th = scores_th |
|
self.dkd = DKD(radius=self.radius, top_k=self.top_k, |
|
scores_th=self.scores_th, n_limit=self.n_limit) |
|
self.device = device |
|
|
|
if model_path != '': |
|
state_dict = torch.load(model_path, self.device) |
|
self.load_state_dict(state_dict) |
|
self.to(self.device) |
|
self.eval() |
|
logging.info(f'Loaded model parameters from {model_path}') |
|
logging.info( |
|
f"Number of model parameters: {sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e3}KB") |
|
|
|
def extract_dense_map(self, image, ret_dict=False): |
|
|
|
|
|
|
|
device = image.device |
|
b, c, h, w = image.shape |
|
h_ = math.ceil(h / 32) * 32 if h % 32 != 0 else h |
|
w_ = math.ceil(w / 32) * 32 if w % 32 != 0 else w |
|
if h_ != h: |
|
h_padding = torch.zeros(b, c, h_ - h, w, device=device) |
|
image = torch.cat([image, h_padding], dim=2) |
|
if w_ != w: |
|
w_padding = torch.zeros(b, c, h_, w_ - w, device=device) |
|
image = torch.cat([image, w_padding], dim=3) |
|
|
|
|
|
scores_map, descriptor_map = super().forward(image) |
|
|
|
|
|
if h_ != h or w_ != w: |
|
descriptor_map = descriptor_map[:, :, :h, :w] |
|
scores_map = scores_map[:, :, :h, :w] |
|
|
|
|
|
|
|
descriptor_map = torch.nn.functional.normalize(descriptor_map, p=2, dim=1) |
|
|
|
if ret_dict: |
|
return {'descriptor_map': descriptor_map, 'scores_map': scores_map, } |
|
else: |
|
return descriptor_map, scores_map |
|
|
|
def forward(self, img, image_size_max=99999, sort=False, sub_pixel=False): |
|
""" |
|
:param img: np.array HxWx3, RGB |
|
:param image_size_max: maximum image size, otherwise, the image will be resized |
|
:param sort: sort keypoints by scores |
|
:param sub_pixel: whether to use sub-pixel accuracy |
|
:return: a dictionary with 'keypoints', 'descriptors', 'scores', and 'time' |
|
""" |
|
H, W, three = img.shape |
|
assert three == 3, "input image shape should be [HxWx3]" |
|
|
|
|
|
image = deepcopy(img) |
|
max_hw = max(H, W) |
|
if max_hw > image_size_max: |
|
ratio = float(image_size_max / max_hw) |
|
image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio) |
|
|
|
|
|
image = torch.from_numpy(image).to(self.device).to(torch.float32).permute(2, 0, 1)[None] / 255.0 |
|
|
|
|
|
start = time.time() |
|
|
|
with torch.no_grad(): |
|
descriptor_map, scores_map = self.extract_dense_map(image) |
|
keypoints, descriptors, scores, _ = self.dkd(scores_map, descriptor_map, |
|
sub_pixel=sub_pixel) |
|
keypoints, descriptors, scores = keypoints[0], descriptors[0], scores[0] |
|
keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W - 1, H - 1]]) |
|
|
|
if sort: |
|
indices = torch.argsort(scores, descending=True) |
|
keypoints = keypoints[indices] |
|
descriptors = descriptors[indices] |
|
scores = scores[indices] |
|
|
|
end = time.time() |
|
|
|
return {'keypoints': keypoints.cpu().numpy(), |
|
'descriptors': descriptors.cpu().numpy(), |
|
'scores': scores.cpu().numpy(), |
|
'scores_map': scores_map.cpu().numpy(), |
|
'time': end - start, } |
|
|
|
|
|
if __name__ == '__main__': |
|
import numpy as np |
|
from thop import profile |
|
|
|
net = ALike(c1=32, c2=64, c3=128, c4=128, dim=128, single_head=False) |
|
|
|
image = np.random.random((640, 480, 3)).astype(np.float32) |
|
flops, params = profile(net, inputs=(image, 9999, False), verbose=False) |
|
print('{:<30} {:<8} GFLops'.format('Computational complexity: ', flops / 1e9)) |
|
print('{:<30} {:<8} KB'.format('Number of parameters: ', params / 1e3)) |
|
|