|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
import torch |
|
import numpy as np |
|
import os, time, random |
|
import argparse |
|
from torch.utils.data import Dataset, DataLoader |
|
from PIL import Image as PILImage |
|
|
|
from model.model import InvISPNet |
|
from dataset.FiveK_dataset import FiveKDatasetTest |
|
from config.config import get_arguments |
|
|
|
from utils.JPEG import DiffJPEG |
|
from utils.commons import denorm, preprocess_test_patch |
|
from tqdm import tqdm |
|
|
|
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp') |
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(np.argmax([int(x.split()[2]) for x in open('tmp', 'r').readlines()])) |
|
|
|
os.system('rm tmp') |
|
|
|
DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda() |
|
|
|
parser = get_arguments() |
|
parser.add_argument("--ckpt", type=str, help="Checkpoint path.") |
|
parser.add_argument("--out_path", type=str, default="./exps/", help="Path to save results. ") |
|
parser.add_argument("--split_to_patch", dest='split_to_patch', action='store_true', help="Test on patch. ") |
|
args = parser.parse_args() |
|
print("Parsed arguments: {}".format(args)) |
|
|
|
|
|
ckpt_name = args.ckpt.split("/")[-1].split(".")[0] |
|
if args.split_to_patch: |
|
os.makedirs(args.out_path+"%s/results_metric_%s/"%(args.task, ckpt_name), exist_ok=True) |
|
out_path = args.out_path+"%s/results_metric_%s/"%(args.task, ckpt_name) |
|
else: |
|
os.makedirs(args.out_path+"%s/results_%s/"%(args.task, ckpt_name), exist_ok=True) |
|
out_path = args.out_path+"%s/results_%s/"%(args.task, ckpt_name) |
|
|
|
|
|
def main(args): |
|
|
|
net = InvISPNet(channel_in=3, channel_out=3, block_num=8) |
|
device = torch.device("cuda:0") |
|
|
|
net.to(device) |
|
net.eval() |
|
|
|
if os.path.isfile(args.ckpt): |
|
net.load_state_dict(torch.load(args.ckpt), strict=False) |
|
print("[INFO] Loaded checkpoint: {}".format(args.ckpt)) |
|
|
|
print("[INFO] Start data load and preprocessing") |
|
RAWDataset = FiveKDatasetTest(opt=args) |
|
dataloader = DataLoader(RAWDataset, batch_size=1, shuffle=False, num_workers=0, drop_last=True) |
|
|
|
print("[INFO] Start test...") |
|
for i_batch, sample_batched in enumerate(tqdm(dataloader)): |
|
step_time = time.time() |
|
|
|
input, target_rgb, target_raw = sample_batched['input_raw'].to(device), sample_batched['target_rgb'].to(device), \ |
|
sample_batched['target_raw'].to(device) |
|
file_name = sample_batched['file_name'][0] |
|
|
|
if args.split_to_patch: |
|
input_list, target_rgb_list, target_raw_list = preprocess_test_patch(input, target_rgb, target_raw) |
|
else: |
|
|
|
input_list, target_rgb_list, target_raw_list = [input[:,:,::2,::2]], [target_rgb[:,:,::2,::2]], [target_raw[:,:,::2,::2]] |
|
|
|
for i_patch in range(len(input_list)): |
|
input_patch = input_list[i_patch] |
|
target_rgb_patch = target_rgb_list[i_patch] |
|
target_raw_patch = target_raw_list[i_patch] |
|
|
|
with torch.no_grad(): |
|
reconstruct_rgb = net(input_patch) |
|
reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1) |
|
|
|
pred_rgb = reconstruct_rgb.detach().permute(0,2,3,1) |
|
target_rgb_patch = target_rgb_patch.permute(0,2,3,1) |
|
|
|
pred_rgb = denorm(pred_rgb, 255) |
|
target_rgb_patch = denorm(target_rgb_patch, 255) |
|
pred_rgb = pred_rgb.cpu().numpy() |
|
target_rgb_patch = target_rgb_patch.cpu().numpy().astype(np.float32) |
|
|
|
|
|
pred = PILImage.fromarray(np.uint8(pred_rgb[0,:,:,:])) |
|
tar_pred = PILImage.fromarray(np.hstack((np.uint8(target_rgb_patch[0,:,:,:]), np.uint8(pred_rgb[0,:,:,:])))) |
|
|
|
tar = PILImage.fromarray(np.uint8(target_rgb_patch[0,:,:,:])) |
|
|
|
pred.save(out_path+"pred_%s_%05d.jpg"%(file_name, i_patch), quality=90, subsampling=1) |
|
tar.save(out_path+"tar_%s_%05d.jpg"%(file_name, i_patch), quality=90, subsampling=1) |
|
tar_pred.save(out_path+"gt_pred_%s_%05d.jpg"%(file_name, i_patch), quality=90, subsampling=1) |
|
|
|
del reconstruct_rgb |
|
|
|
if __name__ == '__main__': |
|
torch.set_num_threads(4) |
|
main(args) |
|
|
|
|