|
import numpy as np |
|
import os, time, random |
|
import argparse |
|
import json |
|
|
|
import torch.nn.functional as F |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
from torch.optim import lr_scheduler |
|
|
|
from model.model import InvISPNet |
|
from dataset.FiveK_dataset import FiveKDatasetTrain |
|
from config.config import get_arguments |
|
|
|
from utils.JPEG import DiffJPEG |
|
|
|
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp') |
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(np.argmax([int(x.split()[2]) for x in open('tmp', 'r').readlines()])) |
|
|
|
os.system('rm tmp') |
|
|
|
DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda() |
|
|
|
parser = get_arguments() |
|
parser.add_argument("--out_path", type=str, default="./exps/", help="Path to save checkpoint. ") |
|
parser.add_argument("--resume", dest='resume', action='store_true', help="Resume training. ") |
|
parser.add_argument("--loss", type=str, default="L1", choices=["L1", "L2"], help="Choose which loss function to use. ") |
|
parser.add_argument("--lr", type=float, default=0.0001, help="Learning rate") |
|
parser.add_argument("--aug", dest='aug', action='store_true', help="Use data augmentation.") |
|
args = parser.parse_args() |
|
print("Parsed arguments: {}".format(args)) |
|
|
|
os.makedirs(args.out_path, exist_ok=True) |
|
os.makedirs(args.out_path+"%s"%args.task, exist_ok=True) |
|
os.makedirs(args.out_path+"%s/checkpoint"%args.task, exist_ok=True) |
|
|
|
with open(args.out_path+"%s/commandline_args.yaml"%args.task , 'w') as f: |
|
json.dump(args.__dict__, f, indent=2) |
|
|
|
def main(args): |
|
|
|
net = InvISPNet(channel_in=3, channel_out=3, block_num=8) |
|
net.cuda() |
|
|
|
if args.resume: |
|
net.load_state_dict(torch.load(args.out_path+"%s/checkpoint/latest.pth"%args.task)) |
|
print("[INFO] loaded " + args.out_path+"%s/checkpoint/latest.pth"%args.task) |
|
|
|
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr) |
|
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[50, 80], gamma=0.5) |
|
|
|
print("[INFO] Start data loading and preprocessing") |
|
RAWDataset = FiveKDatasetTrain(opt=args) |
|
dataloader = DataLoader(RAWDataset, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True) |
|
|
|
print("[INFO] Start to train") |
|
step = 0 |
|
for epoch in range(0, 300): |
|
epoch_time = time.time() |
|
|
|
for i_batch, sample_batched in enumerate(dataloader): |
|
step_time = time.time() |
|
|
|
input, target_rgb, target_raw = sample_batched['input_raw'].cuda(), sample_batched['target_rgb'].cuda(), \ |
|
sample_batched['target_raw'].cuda() |
|
|
|
reconstruct_rgb = net(input) |
|
reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1) |
|
rgb_loss = F.l1_loss(reconstruct_rgb, target_rgb) |
|
reconstruct_rgb = DiffJPEG(reconstruct_rgb) |
|
reconstruct_raw = net(reconstruct_rgb, rev=True) |
|
raw_loss = F.l1_loss(reconstruct_raw, target_raw) |
|
|
|
loss = args.rgb_weight * rgb_loss + raw_loss |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
print("task: %s Epoch: %d Step: %d || loss: %.5f raw_loss: %.5f rgb_loss: %.5f || lr: %f time: %f"%( |
|
args.task, epoch, step, loss.detach().cpu().numpy(), raw_loss.detach().cpu().numpy(), |
|
rgb_loss.detach().cpu().numpy(), optimizer.param_groups[0]['lr'], time.time()-step_time |
|
)) |
|
step += 1 |
|
|
|
torch.save(net.state_dict(), args.out_path+"%s/checkpoint/latest.pth"%args.task) |
|
if (epoch+1) % 10 == 0: |
|
|
|
torch.save(net.state_dict(), args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch)) |
|
print("[INFO] Successfully saved "+args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch)) |
|
scheduler.step() |
|
|
|
print("[INFO] Epoch time: ", time.time()-epoch_time, "task: ", args.task) |
|
|
|
if __name__ == '__main__': |
|
|
|
torch.set_num_threads(4) |
|
main(args) |
|
|