|
from PIL import Image |
|
import numpy as np |
|
|
|
import os |
|
|
|
from tqdm import tqdm |
|
from roma.utils import pose_auc |
|
import cv2 |
|
|
|
|
|
class HpatchesHomogBenchmark: |
|
"""Hpatches grid goes from [0,n-1] instead of [0.5,n-0.5]""" |
|
|
|
def __init__(self, dataset_path) -> None: |
|
seqs_dir = "hpatches-sequences-release" |
|
self.seqs_path = os.path.join(dataset_path, seqs_dir) |
|
self.seq_names = sorted(os.listdir(self.seqs_path)) |
|
|
|
self.ignore_seqs = set( |
|
[ |
|
"i_contruction", |
|
"i_crownnight", |
|
"i_dc", |
|
"i_pencils", |
|
"i_whitebuilding", |
|
"v_artisans", |
|
"v_astronautis", |
|
"v_talent", |
|
] |
|
) |
|
|
|
def convert_coordinates(self, im_A_coords, im_A_to_im_B, wq, hq, wsup, hsup): |
|
offset = 0.5 |
|
im_A_coords = ( |
|
np.stack( |
|
( |
|
wq * (im_A_coords[..., 0] + 1) / 2, |
|
hq * (im_A_coords[..., 1] + 1) / 2, |
|
), |
|
axis=-1, |
|
) |
|
- offset |
|
) |
|
im_A_to_im_B = ( |
|
np.stack( |
|
( |
|
wsup * (im_A_to_im_B[..., 0] + 1) / 2, |
|
hsup * (im_A_to_im_B[..., 1] + 1) / 2, |
|
), |
|
axis=-1, |
|
) |
|
- offset |
|
) |
|
return im_A_coords, im_A_to_im_B |
|
|
|
def benchmark(self, model, model_name = None): |
|
n_matches = [] |
|
homog_dists = [] |
|
for seq_idx, seq_name in tqdm( |
|
enumerate(self.seq_names), total=len(self.seq_names) |
|
): |
|
im_A_path = os.path.join(self.seqs_path, seq_name, "1.ppm") |
|
im_A = Image.open(im_A_path) |
|
w1, h1 = im_A.size |
|
for im_idx in range(2, 7): |
|
im_B_path = os.path.join(self.seqs_path, seq_name, f"{im_idx}.ppm") |
|
im_B = Image.open(im_B_path) |
|
w2, h2 = im_B.size |
|
H = np.loadtxt( |
|
os.path.join(self.seqs_path, seq_name, "H_1_" + str(im_idx)) |
|
) |
|
dense_matches, dense_certainty = model.match( |
|
im_A_path, im_B_path |
|
) |
|
good_matches, _ = model.sample(dense_matches, dense_certainty, 5000) |
|
pos_a, pos_b = self.convert_coordinates( |
|
good_matches[:, :2], good_matches[:, 2:], w1, h1, w2, h2 |
|
) |
|
try: |
|
H_pred, inliers = cv2.findHomography( |
|
pos_a, |
|
pos_b, |
|
method = cv2.RANSAC, |
|
confidence = 0.99999, |
|
ransacReprojThreshold = 3 * min(w2, h2) / 480, |
|
) |
|
except: |
|
H_pred = None |
|
if H_pred is None: |
|
H_pred = np.zeros((3, 3)) |
|
H_pred[2, 2] = 1.0 |
|
corners = np.array( |
|
[[0, 0, 1], [0, h1 - 1, 1], [w1 - 1, 0, 1], [w1 - 1, h1 - 1, 1]] |
|
) |
|
real_warped_corners = np.dot(corners, np.transpose(H)) |
|
real_warped_corners = ( |
|
real_warped_corners[:, :2] / real_warped_corners[:, 2:] |
|
) |
|
warped_corners = np.dot(corners, np.transpose(H_pred)) |
|
warped_corners = warped_corners[:, :2] / warped_corners[:, 2:] |
|
mean_dist = np.mean( |
|
np.linalg.norm(real_warped_corners - warped_corners, axis=1) |
|
) / (min(w2, h2) / 480.0) |
|
homog_dists.append(mean_dist) |
|
|
|
n_matches = np.array(n_matches) |
|
thresholds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] |
|
auc = pose_auc(np.array(homog_dists), thresholds) |
|
return { |
|
"hpatches_homog_auc_3": auc[2], |
|
"hpatches_homog_auc_5": auc[4], |
|
"hpatches_homog_auc_10": auc[9], |
|
} |
|
|