|
from typing import Optional, Union |
|
import torch |
|
from torch import device |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.models as tvm |
|
import gc |
|
|
|
|
|
class ResNet50(nn.Module): |
|
def __init__(self, pretrained=False, high_res = False, weights = None, dilation = None, freeze_bn = True, anti_aliased = False, early_exit = False, amp = False) -> None: |
|
super().__init__() |
|
if dilation is None: |
|
dilation = [False,False,False] |
|
if anti_aliased: |
|
pass |
|
else: |
|
if weights is not None: |
|
self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation) |
|
else: |
|
self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation) |
|
|
|
self.high_res = high_res |
|
self.freeze_bn = freeze_bn |
|
self.early_exit = early_exit |
|
self.amp = amp |
|
self.amp_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 |
|
|
|
def forward(self, x, **kwargs): |
|
with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype): |
|
net = self.net |
|
feats = {1:x} |
|
x = net.conv1(x) |
|
x = net.bn1(x) |
|
x = net.relu(x) |
|
feats[2] = x |
|
x = net.maxpool(x) |
|
x = net.layer1(x) |
|
feats[4] = x |
|
x = net.layer2(x) |
|
feats[8] = x |
|
if self.early_exit: |
|
return feats |
|
x = net.layer3(x) |
|
feats[16] = x |
|
x = net.layer4(x) |
|
feats[32] = x |
|
return feats |
|
|
|
def train(self, mode=True): |
|
super().train(mode) |
|
if self.freeze_bn: |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eval() |
|
pass |
|
|
|
class VGG19(nn.Module): |
|
def __init__(self, pretrained=False, amp = False) -> None: |
|
super().__init__() |
|
self.layers = nn.ModuleList(tvm.vgg19_bn(pretrained=pretrained).features[:40]) |
|
self.amp = amp |
|
self.amp_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 |
|
|
|
def forward(self, x, **kwargs): |
|
with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype): |
|
feats = {} |
|
scale = 1 |
|
for layer in self.layers: |
|
if isinstance(layer, nn.MaxPool2d): |
|
feats[scale] = x |
|
scale = scale*2 |
|
x = layer(x) |
|
return feats |
|
|
|
class CNNandDinov2(nn.Module): |
|
def __init__(self, cnn_kwargs = None, amp = False, use_vgg = False, dinov2_weights = None): |
|
super().__init__() |
|
if dinov2_weights is None: |
|
dinov2_weights = torch.hub.load_state_dict_from_url("https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth", map_location="cpu") |
|
from .transformer import vit_large |
|
vit_kwargs = dict(img_size= 518, |
|
patch_size= 14, |
|
init_values = 1.0, |
|
ffn_layer = "mlp", |
|
block_chunks = 0, |
|
) |
|
|
|
dinov2_vitl14 = vit_large(**vit_kwargs).eval() |
|
dinov2_vitl14.load_state_dict(dinov2_weights) |
|
cnn_kwargs = cnn_kwargs if cnn_kwargs is not None else {} |
|
if not use_vgg: |
|
self.cnn = ResNet50(**cnn_kwargs) |
|
else: |
|
self.cnn = VGG19(**cnn_kwargs) |
|
self.amp = amp |
|
self.amp_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 |
|
if self.amp: |
|
dinov2_vitl14 = dinov2_vitl14.to(self.amp_dtype) |
|
self.dinov2_vitl14 = [dinov2_vitl14] |
|
|
|
|
|
def train(self, mode: bool = True): |
|
return self.cnn.train(mode) |
|
|
|
def forward(self, x, upsample = False): |
|
B,C,H,W = x.shape |
|
feature_pyramid = self.cnn(x) |
|
|
|
if not upsample: |
|
with torch.no_grad(): |
|
if self.dinov2_vitl14[0].device != x.device: |
|
self.dinov2_vitl14[0] = self.dinov2_vitl14[0].to(x.device).to(self.amp_dtype) |
|
dinov2_features_16 = self.dinov2_vitl14[0].forward_features(x.to(self.amp_dtype)) |
|
features_16 = dinov2_features_16['x_norm_patchtokens'].permute(0,2,1).reshape(B,1024,H//14, W//14) |
|
del dinov2_features_16 |
|
feature_pyramid[16] = features_16 |
|
return feature_pyramid |