|
from typing import Dict |
|
import numpy as np |
|
import torch |
|
import kornia.augmentation as K |
|
from kornia.geometry.transform import warp_perspective |
|
|
|
|
|
class GeometricSequential: |
|
def __init__(self, *transforms, align_corners=True) -> None: |
|
self.transforms = transforms |
|
self.align_corners = align_corners |
|
|
|
def __call__(self, x, mode="bilinear"): |
|
b, c, h, w = x.shape |
|
M = torch.eye(3, device=x.device)[None].expand(b, 3, 3) |
|
for t in self.transforms: |
|
if np.random.rand() < t.p: |
|
M = M.matmul( |
|
t.compute_transformation(x, t.generate_parameters((b, c, h, w)), None) |
|
) |
|
return ( |
|
warp_perspective( |
|
x, M, dsize=(h, w), mode=mode, align_corners=self.align_corners |
|
), |
|
M, |
|
) |
|
|
|
def apply_transform(self, x, M, mode="bilinear"): |
|
b, c, h, w = x.shape |
|
return warp_perspective( |
|
x, M, dsize=(h, w), align_corners=self.align_corners, mode=mode |
|
) |
|
|
|
|
|
class RandomPerspective(K.RandomPerspective): |
|
def generate_parameters(self, batch_shape: torch.Size) -> Dict[str, torch.Tensor]: |
|
distortion_scale = torch.as_tensor( |
|
self.distortion_scale, device=self._device, dtype=self._dtype |
|
) |
|
return self.random_perspective_generator( |
|
batch_shape[0], |
|
batch_shape[-2], |
|
batch_shape[-1], |
|
distortion_scale, |
|
self.same_on_batch, |
|
self.device, |
|
self.dtype, |
|
) |
|
|
|
def random_perspective_generator( |
|
self, |
|
batch_size: int, |
|
height: int, |
|
width: int, |
|
distortion_scale: torch.Tensor, |
|
same_on_batch: bool = False, |
|
device: torch.device = torch.device("cpu"), |
|
dtype: torch.dtype = torch.float32, |
|
) -> Dict[str, torch.Tensor]: |
|
r"""Get parameters for ``perspective`` for a random perspective transform. |
|
|
|
Args: |
|
batch_size (int): the tensor batch size. |
|
height (int) : height of the image. |
|
width (int): width of the image. |
|
distortion_scale (torch.Tensor): it controls the degree of distortion and ranges from 0 to 1. |
|
same_on_batch (bool): apply the same transformation across the batch. Default: False. |
|
device (torch.device): the device on which the random numbers will be generated. Default: cpu. |
|
dtype (torch.dtype): the data type of the generated random numbers. Default: float32. |
|
|
|
Returns: |
|
params Dict[str, torch.Tensor]: parameters to be passed for transformation. |
|
- start_points (torch.Tensor): element-wise perspective source areas with a shape of (B, 4, 2). |
|
- end_points (torch.Tensor): element-wise perspective target areas with a shape of (B, 4, 2). |
|
|
|
Note: |
|
The generated random numbers are not reproducible across different devices and dtypes. |
|
""" |
|
if not (distortion_scale.dim() == 0 and 0 <= distortion_scale <= 1): |
|
raise AssertionError( |
|
f"'distortion_scale' must be a scalar within [0, 1]. Got {distortion_scale}." |
|
) |
|
if not ( |
|
type(height) is int and height > 0 and type(width) is int and width > 0 |
|
): |
|
raise AssertionError( |
|
f"'height' and 'width' must be integers. Got {height}, {width}." |
|
) |
|
|
|
start_points: torch.Tensor = torch.tensor( |
|
[[[0.0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]], |
|
device=distortion_scale.device, |
|
dtype=distortion_scale.dtype, |
|
).expand(batch_size, -1, -1) |
|
|
|
|
|
fx = distortion_scale * width / 2 |
|
fy = distortion_scale * height / 2 |
|
|
|
factor = torch.stack([fx, fy], dim=0).view(-1, 1, 2) |
|
offset = (torch.rand_like(start_points) - 0.5) * 2 |
|
end_points = start_points + factor * offset |
|
|
|
return dict(start_points=start_points, end_points=end_points) |
|
|
|
|
|
|
|
class RandomErasing: |
|
def __init__(self, p = 0., scale = 0.) -> None: |
|
self.p = p |
|
self.scale = scale |
|
self.random_eraser = K.RandomErasing(scale = (0.02, scale), p = p) |
|
def __call__(self, image, depth): |
|
if self.p > 0: |
|
image = self.random_eraser(image) |
|
depth = self.random_eraser(depth, params=self.random_eraser._params) |
|
return image, depth |
|
|