Vincentqyw
update: features and matchers
404d2af
raw
history blame
1.39 kB
""" Compose multiple datasets in a single loader. """
import numpy as np
from copy import deepcopy
from torch.utils.data import Dataset
from .wireframe_dataset import WireframeDataset
from .holicity_dataset import HolicityDataset
class MergeDataset(Dataset):
def __init__(self, mode, config=None):
super(MergeDataset, self).__init__()
# Initialize the datasets
self._datasets = []
spec_config = deepcopy(config)
for i, d in enumerate(config['datasets']):
spec_config['dataset_name'] = d
spec_config['gt_source_train'] = config['gt_source_train'][i]
spec_config['gt_source_test'] = config['gt_source_test'][i]
if d == "wireframe":
self._datasets.append(WireframeDataset(mode, spec_config))
elif d == "holicity":
spec_config['train_split'] = config['train_splits'][i]
self._datasets.append(HolicityDataset(mode, spec_config))
else:
raise ValueError("Unknown dataset: " + d)
self._weights = config['weights']
def __getitem__(self, item):
dataset = self._datasets[np.random.choice(
range(len(self._datasets)), p=self._weights)]
return dataset[np.random.randint(len(dataset))]
def __len__(self):
return np.sum([len(d) for d in self._datasets])