Vincentqyw
update: features and matchers
404d2af
raw
history blame
15.1 kB
import numpy as np
import copy
import cv2
import h5py
import math
from tqdm import tqdm
import torch
from torch.nn.functional import pixel_shuffle, softmax
from torch.utils.data import DataLoader
from kornia.geometry import warp_perspective
from .dataset.dataset_util import get_dataset
from .model.model_util import get_model
from .misc.train_utils import get_latest_checkpoint
from .train import convert_junc_predictions
from .dataset.transforms.homographic_transforms import sample_homography
def restore_weights(model, state_dict):
""" Restore weights in compatible mode. """
# Try to directly load state dict
try:
model.load_state_dict(state_dict)
except:
err = model.load_state_dict(state_dict, strict=False)
# missing keys are those in model but not in state_dict
missing_keys = err.missing_keys
# Unexpected keys are those in state_dict but not in model
unexpected_keys = err.unexpected_keys
# Load mismatched keys manually
model_dict = model.state_dict()
for idx, key in enumerate(missing_keys):
dict_keys = [_ for _ in unexpected_keys if not "tracked" in _]
model_dict[key] = state_dict[dict_keys[idx]]
model.load_state_dict(model_dict)
return model
def get_padded_filename(num_pad, idx):
""" Get the filename padded with 0. """
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def export_predictions(args, dataset_cfg, model_cfg, output_path,
export_dataset_mode):
""" Export predictions. """
# Get the test configuration
test_cfg = model_cfg["test"]
# Create the dataset and dataloader based on the export_dataset_mode
print("\t Initializing dataset and dataloader")
batch_size = 4
export_dataset, collate_fn = get_dataset(export_dataset_mode, dataset_cfg)
export_loader = DataLoader(export_dataset, batch_size=batch_size,
num_workers=test_cfg.get("num_workers", 4),
shuffle=False, pin_memory=False,
collate_fn=collate_fn)
print("\t Successfully intialized dataset and dataloader.")
# Initialize model and load the checkpoint
model = get_model(model_cfg, mode="test")
checkpoint = get_latest_checkpoint(args.resume_path, args.checkpoint_name)
model = restore_weights(model, checkpoint["model_state_dict"])
model = model.cuda()
model.eval()
print("\t Successfully initialized model")
# Start the export process
print("[Info] Start exporting predictions")
output_dataset_path = output_path + ".h5"
filename_idx = 0
with h5py.File(output_dataset_path, "w", libver="latest", swmr=True) as f:
# Iterate through all the data in dataloader
for data in tqdm(export_loader, ascii=True):
# Fetch the data
junc_map = data["junction_map"]
heatmap = data["heatmap"]
valid_mask = data["valid_mask"]
input_images = data["image"].cuda()
# Run the forward pass
with torch.no_grad():
outputs = model(input_images)
# Convert predictions
junc_np = convert_junc_predictions(
outputs["junctions"], model_cfg["grid_size"],
model_cfg["detection_thresh"], 300)
junc_map_np = junc_map.numpy().transpose(0, 2, 3, 1)
heatmap_np = softmax(outputs["heatmap"].detach(),
dim=1).cpu().numpy().transpose(0, 2, 3, 1)
heatmap_gt_np = heatmap.numpy().transpose(0, 2, 3, 1)
valid_mask_np = valid_mask.numpy().transpose(0, 2, 3, 1)
# Data entries to save
current_batch_size = input_images.shape[0]
for batch_idx in range(current_batch_size):
output_data = {
"image": input_images.cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"junc_gt": junc_map_np[batch_idx],
"junc_pred": junc_np["junc_pred"][batch_idx],
"junc_pred_nms": junc_np["junc_pred_nms"][batch_idx].astype(np.float32),
"heatmap_gt": heatmap_gt_np[batch_idx],
"heatmap_pred": heatmap_np[batch_idx],
"valid_mask": valid_mask_np[batch_idx],
"junc_points": data["junctions"][batch_idx].numpy()[0].round().astype(np.int32),
"line_map": data["line_map"][batch_idx].numpy()[0].astype(np.int32)
}
# Save data to h5 dataset
num_pad = math.ceil(math.log10(len(export_loader))) + 1
output_key = get_padded_filename(num_pad, filename_idx)
f_group = f.create_group(output_key)
# Store data
for key, output_data in output_data.items():
f_group.create_dataset(key, data=output_data,
compression="gzip")
filename_idx += 1
def export_homograpy_adaptation(args, dataset_cfg, model_cfg, output_path,
export_dataset_mode, device):
""" Export homography adaptation results. """
# Check if the export_dataset_mode is supported
supported_modes = ["train", "test"]
if not export_dataset_mode in supported_modes:
raise ValueError(
"[Error] The specified export_dataset_mode is not supported.")
# Get the test configuration
test_cfg = model_cfg["test"]
# Get the homography adaptation configurations
homography_cfg = dataset_cfg.get("homography_adaptation", None)
if homography_cfg is None:
raise ValueError(
"[Error] Empty homography_adaptation entry in config.")
# Create the dataset and dataloader based on the export_dataset_mode
print("\t Initializing dataset and dataloader")
batch_size = args.export_batch_size
export_dataset, collate_fn = get_dataset(export_dataset_mode, dataset_cfg)
export_loader = DataLoader(export_dataset, batch_size=batch_size,
num_workers=test_cfg.get("num_workers", 4),
shuffle=False, pin_memory=False,
collate_fn=collate_fn)
print("\t Successfully intialized dataset and dataloader.")
# Initialize model and load the checkpoint
model = get_model(model_cfg, mode="test")
checkpoint = get_latest_checkpoint(args.resume_path, args.checkpoint_name,
device)
model = restore_weights(model, checkpoint["model_state_dict"])
model = model.to(device).eval()
print("\t Successfully initialized model")
# Start the export process
print("[Info] Start exporting predictions")
output_dataset_path = output_path + ".h5"
with h5py.File(output_dataset_path, "w", libver="latest") as f:
f.swmr_mode=True
for _, data in enumerate(tqdm(export_loader, ascii=True)):
input_images = data["image"].to(device)
file_keys = data["file_key"]
batch_size = input_images.shape[0]
# Run the homograpy adaptation
outputs = homography_adaptation(input_images, model,
model_cfg["grid_size"],
homography_cfg)
# Save the entries
for batch_idx in range(batch_size):
# Get the save key
save_key = file_keys[batch_idx]
output_data = {
"image": input_images.cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"junc_prob_mean": outputs["junc_probs_mean"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"junc_prob_max": outputs["junc_probs_max"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"junc_count": outputs["junc_counts"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"heatmap_prob_mean": outputs["heatmap_probs_mean"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"heatmap_prob_max": outputs["heatmap_probs_max"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx],
"heatmap_cout": outputs["heatmap_counts"].cpu().numpy().transpose(0, 2, 3, 1)[batch_idx]
}
# Create group and write data
f_group = f.create_group(save_key)
for key, output_data in output_data.items():
f_group.create_dataset(key, data=output_data,
compression="gzip")
def homography_adaptation(input_images, model, grid_size, homography_cfg):
""" The homography adaptation process.
Arguments:
input_images: The images to be evaluated.
model: The pytorch model in evaluation mode.
grid_size: Grid size of the junction decoder.
homography_cfg: Homography adaptation configurations.
"""
# Get the device of the current model
device = next(model.parameters()).device
# Define some constants and placeholder
batch_size, _, H, W = input_images.shape
num_iter = homography_cfg["num_iter"]
junc_probs = torch.zeros([batch_size, num_iter, H, W], device=device)
junc_counts = torch.zeros([batch_size, 1, H, W], device=device)
heatmap_probs = torch.zeros([batch_size, num_iter, H, W], device=device)
heatmap_counts = torch.zeros([batch_size, 1, H, W], device=device)
margin = homography_cfg["valid_border_margin"]
# Keep a config with no artifacts
homography_cfg_no_artifacts = copy.copy(homography_cfg["homographies"])
homography_cfg_no_artifacts["allow_artifacts"] = False
for idx in range(num_iter):
if idx <= num_iter // 5:
# Ensure that 20% of the homographies have no artifact
H_mat_lst = [sample_homography(
[H,W], **homography_cfg_no_artifacts)[0][None]
for _ in range(batch_size)]
else:
H_mat_lst = [sample_homography(
[H,W], **homography_cfg["homographies"])[0][None]
for _ in range(batch_size)]
H_mats = np.concatenate(H_mat_lst, axis=0)
H_tensor = torch.tensor(H_mats, dtype=torch.float, device=device)
H_inv_tensor = torch.inverse(H_tensor)
# Perform the homography warp
images_warped = warp_perspective(input_images, H_tensor, (H, W),
flags="bilinear")
# Warp the mask
masks_junc_warped = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_tensor, (H, W), flags="nearest")
masks_heatmap_warped = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_tensor, (H, W), flags="nearest")
# Run the network forward pass
with torch.no_grad():
outputs = model(images_warped)
# Unwarp and mask the junction prediction
junc_prob_warped = pixel_shuffle(softmax(
outputs["junctions"], dim=1)[:, :-1, :, :], grid_size)
junc_prob = warp_perspective(junc_prob_warped, H_inv_tensor,
(H, W), flags="bilinear")
# Create the out of boundary mask
out_boundary_mask = warp_perspective(
torch.ones([batch_size, 1, H, W], device=device),
H_inv_tensor, (H, W), flags="nearest")
out_boundary_mask = adjust_border(out_boundary_mask, device, margin)
junc_prob = junc_prob * out_boundary_mask
junc_count = warp_perspective(masks_junc_warped * out_boundary_mask,
H_inv_tensor, (H, W), flags="nearest")
# Unwarp the mask and heatmap prediction
# Always fetch only one channel
if outputs["heatmap"].shape[1] == 2:
# Convert to single channel directly from here
heatmap_prob_warped = softmax(outputs["heatmap"],
dim=1)[:, 1:, :, :]
else:
heatmap_prob_warped = torch.sigmoid(outputs["heatmap"])
heatmap_prob_warped = heatmap_prob_warped * masks_heatmap_warped
heatmap_prob = warp_perspective(heatmap_prob_warped, H_inv_tensor,
(H, W), flags="bilinear")
heatmap_count = warp_perspective(masks_heatmap_warped, H_inv_tensor,
(H, W), flags="nearest")
# Record the results
junc_probs[:, idx:idx+1, :, :] = junc_prob
heatmap_probs[:, idx:idx+1, :, :] = heatmap_prob
junc_counts += junc_count
heatmap_counts += heatmap_count
# Perform the accumulation operation
if homography_cfg["min_counts"] > 0:
min_counts = homography_cfg["min_counts"]
junc_count_mask = (junc_counts < min_counts)
heatmap_count_mask = (heatmap_counts < min_counts)
junc_counts[junc_count_mask] = 0
heatmap_counts[heatmap_count_mask] = 0
else:
junc_count_mask = np.zeros_like(junc_counts, dtype=bool)
heatmap_count_mask = np.zeros_like(heatmap_counts, dtype=bool)
# Compute the mean accumulation
junc_probs_mean = torch.sum(junc_probs, dim=1, keepdim=True) / junc_counts
junc_probs_mean[junc_count_mask] = 0.
heatmap_probs_mean = (torch.sum(heatmap_probs, dim=1, keepdim=True)
/ heatmap_counts)
heatmap_probs_mean[heatmap_count_mask] = 0.
# Compute the max accumulation
junc_probs_max = torch.max(junc_probs, dim=1, keepdim=True)[0]
junc_probs_max[junc_count_mask] = 0.
heatmap_probs_max = torch.max(heatmap_probs, dim=1, keepdim=True)[0]
heatmap_probs_max[heatmap_count_mask] = 0.
return {"junc_probs_mean": junc_probs_mean,
"junc_probs_max": junc_probs_max,
"junc_counts": junc_counts,
"heatmap_probs_mean": heatmap_probs_mean,
"heatmap_probs_max": heatmap_probs_max,
"heatmap_counts": heatmap_counts}
def adjust_border(input_masks, device, margin=3):
""" Adjust the border of the counts and valid_mask. """
# Convert the mask to numpy array
dtype = input_masks.dtype
input_masks = np.squeeze(input_masks.cpu().numpy(), axis=1)
erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
(margin*2, margin*2))
batch_size = input_masks.shape[0]
output_mask_lst = []
# Erode all the masks
for i in range(batch_size):
output_mask = cv2.erode(input_masks[i, ...], erosion_kernel)
output_mask_lst.append(
torch.tensor(output_mask, dtype=dtype, device=device)[None])
# Concat back along the batch dimension.
output_masks = torch.cat(output_mask_lst, dim=0)
return output_masks.unsqueeze(dim=1)