|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
def warp_points(points, homography): |
|
|
|
new_points = np.concatenate([points[..., [1, 0]], |
|
np.ones_like(points[..., :1])], axis=-1) |
|
|
|
new_points = (homography @ new_points.T).T |
|
|
|
new_points = new_points[..., [1, 0]] / new_points[..., 2:] |
|
return new_points |
|
|
|
|
|
|
|
def mask_points(points, img_size): |
|
mask = ((points[..., 0] >= 0) |
|
& (points[..., 0] < img_size[0]) |
|
& (points[..., 1] >= 0) |
|
& (points[..., 1] < img_size[1])) |
|
return mask |
|
|
|
|
|
|
|
|
|
def keypoints_to_grid(keypoints, img_size): |
|
n_points = keypoints.size()[-2] |
|
device = keypoints.device |
|
grid_points = keypoints.float() * 2. / torch.tensor( |
|
img_size, dtype=torch.float, device=device) - 1. |
|
grid_points = grid_points[..., [1, 0]].view(-1, n_points, 1, 2) |
|
return grid_points |
|
|
|
|
|
|
|
|
|
def get_dist_mask(kp0, kp1, valid_mask, dist_thresh): |
|
b_size, n_points, _ = kp0.size() |
|
dist_mask0 = torch.norm(kp0.unsqueeze(2) - kp0.unsqueeze(1), dim=-1) |
|
dist_mask1 = torch.norm(kp1.unsqueeze(2) - kp1.unsqueeze(1), dim=-1) |
|
dist_mask = torch.min(dist_mask0, dist_mask1) |
|
dist_mask = dist_mask <= dist_thresh |
|
dist_mask = dist_mask.repeat(1, 1, b_size).reshape(b_size * n_points, |
|
b_size * n_points) |
|
dist_mask = dist_mask[valid_mask, :][:, valid_mask] |
|
return dist_mask |
|
|
|
|
|
|
|
|
|
|
|
def sample_line_points(lines, n): |
|
line_points_x = np.linspace(lines[:, 0, 0], lines[:, 1, 0], n, axis=-1) |
|
line_points_y = np.linspace(lines[:, 0, 1], lines[:, 1, 1], n, axis=-1) |
|
line_points = np.stack([line_points_x, line_points_y], axis=2) |
|
return line_points |
|
|
|
|
|
|
|
def mask_lines(lines, valid_mask): |
|
h, w = valid_mask.shape |
|
int_lines = np.clip(np.round(lines).astype(int), 0, [h - 1, w - 1]) |
|
h_valid = valid_mask[int_lines[:, 0, 0], int_lines[:, 0, 1]] |
|
w_valid = valid_mask[int_lines[:, 1, 0], int_lines[:, 1, 1]] |
|
valid = h_valid & w_valid |
|
return valid |
|
|
|
|
|
|
|
|
|
def get_common_line_mask(line_indices, valid_mask): |
|
b_size, n_points = line_indices.shape |
|
common_mask = line_indices[:, :, None] == line_indices[:, None, :] |
|
common_mask = common_mask.repeat(1, 1, b_size).reshape(b_size * n_points, |
|
b_size * n_points) |
|
common_mask = common_mask[valid_mask, :][:, valid_mask] |
|
return common_mask |
|
|