Vincentqyw
update: features and matchers
404d2af
raw
history blame
17.7 kB
"""
Implementation of the line matching methods.
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from ..misc.geometry_utils import keypoints_to_grid
class WunschLineMatcher(object):
""" Class matching two sets of line segments
with the Needleman-Wunsch algorithm. """
def __init__(self, cross_check=True, num_samples=10, min_dist_pts=8,
top_k_candidates=10, grid_size=8, sampling="regular",
line_score=False):
self.cross_check = cross_check
self.num_samples = num_samples
self.min_dist_pts = min_dist_pts
self.top_k_candidates = top_k_candidates
self.grid_size = grid_size
self.line_score = line_score # True to compute saliency on a line
self.sampling_mode = sampling
if sampling not in ["regular", "d2_net", "asl_feat"]:
raise ValueError("Wrong sampling mode: " + sampling)
def forward(self, line_seg1, line_seg2, desc1, desc2):
"""
Find the best matches between two sets of line segments
and their corresponding descriptors.
"""
img_size1 = (desc1.shape[2] * self.grid_size,
desc1.shape[3] * self.grid_size)
img_size2 = (desc2.shape[2] * self.grid_size,
desc2.shape[3] * self.grid_size)
device = desc1.device
# Default case when an image has no lines
if len(line_seg1) == 0:
return np.empty((0), dtype=int)
if len(line_seg2) == 0:
return -np.ones(len(line_seg1), dtype=int)
# Sample points regularly along each line
if self.sampling_mode == "regular":
line_points1, valid_points1 = self.sample_line_points(line_seg1)
line_points2, valid_points2 = self.sample_line_points(line_seg2)
else:
line_points1, valid_points1 = self.sample_salient_points(
line_seg1, desc1, img_size1, self.sampling_mode)
line_points2, valid_points2 = self.sample_salient_points(
line_seg2, desc2, img_size2, self.sampling_mode)
line_points1 = torch.tensor(line_points1.reshape(-1, 2),
dtype=torch.float, device=device)
line_points2 = torch.tensor(line_points2.reshape(-1, 2),
dtype=torch.float, device=device)
# Extract the descriptors for each point
grid1 = keypoints_to_grid(line_points1, img_size1)
grid2 = keypoints_to_grid(line_points2, img_size2)
desc1 = F.normalize(F.grid_sample(desc1, grid1)[0, :, :, 0], dim=0)
desc2 = F.normalize(F.grid_sample(desc2, grid2)[0, :, :, 0], dim=0)
# Precompute the distance between line points for every pair of lines
# Assign a score of -1 for unvalid points
scores = desc1.t() @ desc2
scores[~valid_points1.flatten()] = -1
scores[:, ~valid_points2.flatten()] = -1
scores = scores.reshape(len(line_seg1), self.num_samples,
len(line_seg2), self.num_samples)
scores = scores.permute(0, 2, 1, 3)
# scores.shape = (n_lines1, n_lines2, num_samples, num_samples)
# Pre-filter the line candidates and find the best match for each line
matches = self.filter_and_match_lines(scores)
# [Optionally] filter matches with mutual nearest neighbor filtering
if self.cross_check:
matches2 = self.filter_and_match_lines(
scores.permute(1, 0, 3, 2))
mutual = matches2[matches] == np.arange(len(line_seg1))
matches[~mutual] = -1
return matches
def d2_net_saliency_score(self, desc):
""" Compute the D2-Net saliency score
on a 3D or 4D descriptor. """
is_3d = len(desc.shape) == 3
b_size = len(desc)
feat = F.relu(desc)
# Compute the soft local max
exp = torch.exp(feat)
if is_3d:
sum_exp = 3 * F.avg_pool1d(exp, kernel_size=3, stride=1,
padding=1)
else:
sum_exp = 9 * F.avg_pool2d(exp, kernel_size=3, stride=1,
padding=1)
soft_local_max = exp / sum_exp
# Compute the depth-wise maximum
depth_wise_max = torch.max(feat, dim=1)[0]
depth_wise_max = feat / depth_wise_max.unsqueeze(1)
# Total saliency score
score = torch.max(soft_local_max * depth_wise_max, dim=1)[0]
normalization = torch.sum(score.reshape(b_size, -1), dim=1)
if is_3d:
normalization = normalization.reshape(b_size, 1)
else:
normalization = normalization.reshape(b_size, 1, 1)
score = score / normalization
return score
def asl_feat_saliency_score(self, desc):
""" Compute the ASLFeat saliency score on a 3D or 4D descriptor. """
is_3d = len(desc.shape) == 3
b_size = len(desc)
# Compute the soft local peakiness
if is_3d:
local_avg = F.avg_pool1d(desc, kernel_size=3, stride=1, padding=1)
else:
local_avg = F.avg_pool2d(desc, kernel_size=3, stride=1, padding=1)
soft_local_score = F.softplus(desc - local_avg)
# Compute the depth-wise peakiness
depth_wise_mean = torch.mean(desc, dim=1).unsqueeze(1)
depth_wise_score = F.softplus(desc - depth_wise_mean)
# Total saliency score
score = torch.max(soft_local_score * depth_wise_score, dim=1)[0]
normalization = torch.sum(score.reshape(b_size, -1), dim=1)
if is_3d:
normalization = normalization.reshape(b_size, 1)
else:
normalization = normalization.reshape(b_size, 1, 1)
score = score / normalization
return score
def sample_salient_points(self, line_seg, desc, img_size,
saliency_type='d2_net'):
"""
Sample the most salient points along each line segments, with a
minimal distance between each point. Pad the remaining points.
Inputs:
line_seg: an Nx2x2 torch.Tensor.
desc: a NxDxHxW torch.Tensor.
image_size: the original image size.
saliency_type: 'd2_net' or 'asl_feat'.
Outputs:
line_points: an Nxnum_samplesx2 np.array.
valid_points: a boolean Nxnum_samples np.array.
"""
device = desc.device
if not self.line_score:
# Compute the score map
if saliency_type == "d2_net":
score = self.d2_net_saliency_score(desc)
else:
score = self.asl_feat_saliency_score(desc)
num_lines = len(line_seg)
line_lengths = np.linalg.norm(line_seg[:, 0] - line_seg[:, 1], axis=1)
# The number of samples depends on the length of the line
num_samples_lst = np.clip(line_lengths // self.min_dist_pts,
2, self.num_samples)
line_points = np.empty((num_lines, self.num_samples, 2), dtype=float)
valid_points = np.empty((num_lines, self.num_samples), dtype=bool)
# Sample the score on a fixed number of points of each line
n_samples_per_region = 4
for n in np.arange(2, self.num_samples + 1):
sample_rate = n * n_samples_per_region
# Consider all lines where we can fit up to n points
cur_mask = num_samples_lst == n
cur_line_seg = line_seg[cur_mask]
cur_num_lines = len(cur_line_seg)
if cur_num_lines == 0:
continue
line_points_x = np.linspace(cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 0],
sample_rate, axis=-1)
line_points_y = np.linspace(cur_line_seg[:, 0, 1],
cur_line_seg[:, 1, 1],
sample_rate, axis=-1)
cur_line_points = np.stack([line_points_x, line_points_y],
axis=-1).reshape(-1, 2)
# cur_line_points is of shape (n_cur_lines * sample_rate, 2)
cur_line_points = torch.tensor(cur_line_points, dtype=torch.float,
device=device)
grid_points = keypoints_to_grid(cur_line_points, img_size)
if self.line_score:
# The saliency score is high when the activation are locally
# maximal along the line (and not in a square neigborhood)
line_desc = F.grid_sample(desc, grid_points).squeeze()
line_desc = line_desc.reshape(-1, cur_num_lines, sample_rate)
line_desc = line_desc.permute(1, 0, 2)
if saliency_type == "d2_net":
scores = self.d2_net_saliency_score(line_desc)
else:
scores = self.asl_feat_saliency_score(line_desc)
else:
scores = F.grid_sample(score.unsqueeze(1),
grid_points).squeeze()
# Take the most salient point in n distinct regions
scores = scores.reshape(-1, n, n_samples_per_region)
best = torch.max(scores, dim=2, keepdim=True)[1].cpu().numpy()
cur_line_points = cur_line_points.reshape(-1, n,
n_samples_per_region, 2)
cur_line_points = np.take_along_axis(
cur_line_points, best[..., None], axis=2)[:, :, 0]
# Pad
cur_valid_points = np.ones((cur_num_lines, self.num_samples),
dtype=bool)
cur_valid_points[:, n:] = False
cur_line_points = np.concatenate([
cur_line_points,
np.zeros((cur_num_lines, self.num_samples - n, 2), dtype=float)],
axis=1)
line_points[cur_mask] = cur_line_points
valid_points[cur_mask] = cur_valid_points
return line_points, valid_points
def sample_line_points(self, line_seg):
"""
Regularly sample points along each line segments, with a minimal
distance between each point. Pad the remaining points.
Inputs:
line_seg: an Nx2x2 torch.Tensor.
Outputs:
line_points: an Nxnum_samplesx2 np.array.
valid_points: a boolean Nxnum_samples np.array.
"""
num_lines = len(line_seg)
line_lengths = np.linalg.norm(line_seg[:, 0] - line_seg[:, 1], axis=1)
# Sample the points separated by at least min_dist_pts along each line
# The number of samples depends on the length of the line
num_samples_lst = np.clip(line_lengths // self.min_dist_pts,
2, self.num_samples)
line_points = np.empty((num_lines, self.num_samples, 2), dtype=float)
valid_points = np.empty((num_lines, self.num_samples), dtype=bool)
for n in np.arange(2, self.num_samples + 1):
# Consider all lines where we can fit up to n points
cur_mask = num_samples_lst == n
cur_line_seg = line_seg[cur_mask]
line_points_x = np.linspace(cur_line_seg[:, 0, 0],
cur_line_seg[:, 1, 0],
n, axis=-1)
line_points_y = np.linspace(cur_line_seg[:, 0, 1],
cur_line_seg[:, 1, 1],
n, axis=-1)
cur_line_points = np.stack([line_points_x, line_points_y], axis=-1)
# Pad
cur_num_lines = len(cur_line_seg)
cur_valid_points = np.ones((cur_num_lines, self.num_samples),
dtype=bool)
cur_valid_points[:, n:] = False
cur_line_points = np.concatenate([
cur_line_points,
np.zeros((cur_num_lines, self.num_samples - n, 2), dtype=float)],
axis=1)
line_points[cur_mask] = cur_line_points
valid_points[cur_mask] = cur_valid_points
return line_points, valid_points
def filter_and_match_lines(self, scores):
"""
Use the scores to keep the top k best lines, compute the Needleman-
Wunsch algorithm on each candidate pairs, and keep the highest score.
Inputs:
scores: a (N, M, n, n) torch.Tensor containing the pairwise scores
of the elements to match.
Outputs:
matches: a (N) np.array containing the indices of the best match
"""
# Pre-filter the pairs and keep the top k best candidate lines
line_scores1 = scores.max(3)[0]
valid_scores1 = line_scores1 != -1
line_scores1 = ((line_scores1 * valid_scores1).sum(2)
/ valid_scores1.sum(2))
line_scores2 = scores.max(2)[0]
valid_scores2 = line_scores2 != -1
line_scores2 = ((line_scores2 * valid_scores2).sum(2)
/ valid_scores2.sum(2))
line_scores = (line_scores1 + line_scores2) / 2
topk_lines = torch.argsort(line_scores,
dim=1)[:, -self.top_k_candidates:]
scores, topk_lines = scores.cpu().numpy(), topk_lines.cpu().numpy()
# topk_lines.shape = (n_lines1, top_k_candidates)
top_scores = np.take_along_axis(scores, topk_lines[:, :, None, None],
axis=1)
# Consider the reversed line segments as well
top_scores = np.concatenate([top_scores, top_scores[..., ::-1]],
axis=1)
# Compute the line distance matrix with Needleman-Wunsch algo and
# retrieve the closest line neighbor
n_lines1, top2k, n, m = top_scores.shape
top_scores = top_scores.reshape(n_lines1 * top2k, n, m)
nw_scores = self.needleman_wunsch(top_scores)
nw_scores = nw_scores.reshape(n_lines1, top2k)
matches = np.mod(np.argmax(nw_scores, axis=1), top2k // 2)
matches = topk_lines[np.arange(n_lines1), matches]
return matches
def needleman_wunsch(self, scores):
"""
Batched implementation of the Needleman-Wunsch algorithm.
The cost of the InDel operation is set to 0 by subtracting the gap
penalty to the scores.
Inputs:
scores: a (B, N, M) np.array containing the pairwise scores
of the elements to match.
"""
b, n, m = scores.shape
# Recalibrate the scores to get a gap score of 0
gap = 0.1
nw_scores = scores - gap
# Run the dynamic programming algorithm
nw_grid = np.zeros((b, n + 1, m + 1), dtype=float)
for i in range(n):
for j in range(m):
nw_grid[:, i + 1, j + 1] = np.maximum(
np.maximum(nw_grid[:, i + 1, j], nw_grid[:, i, j + 1]),
nw_grid[:, i, j] + nw_scores[:, i, j])
return nw_grid[:, -1, -1]
def get_pairwise_distance(self, line_seg1, line_seg2, desc1, desc2):
"""
Compute the OPPOSITE of the NW score for pairs of line segments
and their corresponding descriptors.
"""
num_lines = len(line_seg1)
assert num_lines == len(line_seg2), "The same number of lines is required in pairwise score."
img_size1 = (desc1.shape[2] * self.grid_size,
desc1.shape[3] * self.grid_size)
img_size2 = (desc2.shape[2] * self.grid_size,
desc2.shape[3] * self.grid_size)
device = desc1.device
# Sample points regularly along each line
line_points1, valid_points1 = self.sample_line_points(line_seg1)
line_points2, valid_points2 = self.sample_line_points(line_seg2)
line_points1 = torch.tensor(line_points1.reshape(-1, 2),
dtype=torch.float, device=device)
line_points2 = torch.tensor(line_points2.reshape(-1, 2),
dtype=torch.float, device=device)
# Extract the descriptors for each point
grid1 = keypoints_to_grid(line_points1, img_size1)
grid2 = keypoints_to_grid(line_points2, img_size2)
desc1 = F.normalize(F.grid_sample(desc1, grid1)[0, :, :, 0], dim=0)
desc1 = desc1.reshape(-1, num_lines, self.num_samples)
desc2 = F.normalize(F.grid_sample(desc2, grid2)[0, :, :, 0], dim=0)
desc2 = desc2.reshape(-1, num_lines, self.num_samples)
# Compute the distance between line points for every pair of lines
# Assign a score of -1 for unvalid points
scores = torch.einsum('dns,dnt->nst', desc1, desc2).cpu().numpy()
scores = scores.reshape(num_lines * self.num_samples,
self.num_samples)
scores[~valid_points1.flatten()] = -1
scores = scores.reshape(num_lines, self.num_samples, self.num_samples)
scores = scores.transpose(1, 0, 2).reshape(self.num_samples, -1)
scores[:, ~valid_points2.flatten()] = -1
scores = scores.reshape(self.num_samples, num_lines, self.num_samples)
scores = scores.transpose(1, 0, 2)
# scores.shape = (num_lines, num_samples, num_samples)
# Compute the NW score for each pair of lines
pairwise_scores = np.array([self.needleman_wunsch(s) for s in scores])
return -pairwise_scores