|
import os.path as osp |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset |
|
from loguru import logger |
|
|
|
from src.utils.dataset import read_megadepth_gray, read_megadepth_depth |
|
|
|
|
|
class MegaDepthDataset(Dataset): |
|
def __init__(self, |
|
root_dir, |
|
npz_path, |
|
mode='train', |
|
min_overlap_score=0.4, |
|
img_resize=None, |
|
df=None, |
|
img_padding=False, |
|
depth_padding=False, |
|
augment_fn=None, |
|
**kwargs): |
|
""" |
|
Manage one scene(npz_path) of MegaDepth dataset. |
|
|
|
Args: |
|
root_dir (str): megadepth root directory that has `phoenix`. |
|
npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. |
|
mode (str): options are ['train', 'val', 'test'] |
|
min_overlap_score (float): how much a pair should have in common. In range of [0, 1]. Set to 0 when testing. |
|
img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended. |
|
This is useful during training with batches and testing with memory intensive algorithms. |
|
df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize. |
|
img_padding (bool): If set to 'True', zero-pad the image to squared size. This is useful during training. |
|
depth_padding (bool): If set to 'True', zero-pad depthmap to (2000, 2000). This is useful during training. |
|
augment_fn (callable, optional): augments images with pre-defined visual effects. |
|
""" |
|
super().__init__() |
|
self.root_dir = root_dir |
|
self.mode = mode |
|
self.scene_id = npz_path.split('.')[0] |
|
|
|
|
|
if mode == 'test' and min_overlap_score != 0: |
|
logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.") |
|
min_overlap_score = 0 |
|
self.scene_info = np.load(npz_path, allow_pickle=True) |
|
self.pair_infos = self.scene_info['pair_infos'].copy() |
|
del self.scene_info['pair_infos'] |
|
self.pair_infos = [pair_info for pair_info in self.pair_infos if pair_info[1] > min_overlap_score] |
|
|
|
|
|
if mode == 'train': |
|
assert img_resize is not None and img_padding and depth_padding |
|
self.img_resize = img_resize |
|
if mode == 'val': |
|
self.img_resize = 864 |
|
self.df = df |
|
self.img_padding = img_padding |
|
self.depth_max_size = 2000 if depth_padding else None |
|
|
|
|
|
self.augment_fn = augment_fn if mode == 'train' else None |
|
self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125) |
|
|
|
def __len__(self): |
|
return len(self.pair_infos) |
|
|
|
def __getitem__(self, idx): |
|
(idx0, idx1), overlap_score, central_matches = self.pair_infos[idx] |
|
|
|
|
|
img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0]) |
|
img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1]) |
|
|
|
|
|
image0, mask0, scale0 = read_megadepth_gray( |
|
img_name0, self.img_resize, self.df, self.img_padding, None) |
|
|
|
image1, mask1, scale1 = read_megadepth_gray( |
|
img_name1, self.img_resize, self.df, self.img_padding, None) |
|
|
|
|
|
|
|
if self.mode in ['train', 'val']: |
|
depth0 = read_megadepth_depth( |
|
osp.join(self.root_dir, self.scene_info['depth_paths'][idx0]), pad_to=self.depth_max_size) |
|
depth1 = read_megadepth_depth( |
|
osp.join(self.root_dir, self.scene_info['depth_paths'][idx1]), pad_to=self.depth_max_size) |
|
else: |
|
depth0 = depth1 = torch.tensor([]) |
|
|
|
|
|
K_0 = torch.tensor(self.scene_info['intrinsics'][idx0].copy(), dtype=torch.float).reshape(3, 3) |
|
K_1 = torch.tensor(self.scene_info['intrinsics'][idx1].copy(), dtype=torch.float).reshape(3, 3) |
|
|
|
|
|
T0 = self.scene_info['poses'][idx0] |
|
T1 = self.scene_info['poses'][idx1] |
|
T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] |
|
T_1to0 = T_0to1.inverse() |
|
|
|
data = { |
|
'image0': image0, |
|
'depth0': depth0, |
|
'image1': image1, |
|
'depth1': depth1, |
|
'T_0to1': T_0to1, |
|
'T_1to0': T_1to0, |
|
'K0': K_0, |
|
'K1': K_1, |
|
'scale0': scale0, |
|
'scale1': scale1, |
|
'dataset_name': 'MegaDepth', |
|
'scene_id': self.scene_id, |
|
'pair_id': idx, |
|
'pair_names': (self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]), |
|
} |
|
|
|
|
|
if mask0 is not None: |
|
if self.coarse_scale: |
|
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(), |
|
scale_factor=self.coarse_scale, |
|
mode='nearest', |
|
recompute_scale_factor=False)[0].bool() |
|
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1}) |
|
|
|
return data |
|
|