|
from math import log |
|
from loguru import logger |
|
|
|
import torch |
|
from einops import repeat |
|
from kornia.utils import create_meshgrid |
|
|
|
from .geometry import warp_kpts |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def mask_pts_at_padded_regions(grid_pt, mask): |
|
"""For megadepth dataset, zero-padding exists in images""" |
|
mask = repeat(mask, 'n h w -> n (h w) c', c=2) |
|
grid_pt[~mask.bool()] = 0 |
|
return grid_pt |
|
|
|
|
|
@torch.no_grad() |
|
def spvs_coarse(data, config): |
|
""" |
|
Update: |
|
data (dict): { |
|
"conf_matrix_gt": [N, hw0, hw1], |
|
'spv_b_ids': [M] |
|
'spv_i_ids': [M] |
|
'spv_j_ids': [M] |
|
'spv_w_pt0_i': [N, hw0, 2], in original image resolution |
|
'spv_pt1_i': [N, hw1, 2], in original image resolution |
|
} |
|
|
|
NOTE: |
|
- for scannet dataset, there're 3 kinds of resolution {i, c, f} |
|
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f} |
|
""" |
|
|
|
device = data['image0'].device |
|
N, _, H0, W0 = data['image0'].shape |
|
_, _, H1, W1 = data['image1'].shape |
|
scale = config['MODEL']['RESOLUTION'][0] |
|
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale |
|
scale1 = scale * data['scale1'][:, None] if 'scale0' in data else scale |
|
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) |
|
|
|
|
|
|
|
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) |
|
grid_pt0_i = scale0 * grid_pt0_c |
|
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1) |
|
grid_pt1_i = scale1 * grid_pt1_c |
|
|
|
|
|
if 'mask0' in data: |
|
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0']) |
|
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1']) |
|
|
|
|
|
|
|
|
|
_, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1']) |
|
_, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0']) |
|
w_pt0_c = w_pt0_i / scale1 |
|
w_pt1_c = w_pt1_i / scale0 |
|
|
|
|
|
w_pt0_c_round = w_pt0_c[:, :, :].round().long() |
|
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1 |
|
w_pt1_c_round = w_pt1_c[:, :, :].round().long() |
|
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0 |
|
|
|
|
|
def out_bound_mask(pt, w, h): |
|
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) |
|
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0 |
|
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0 |
|
|
|
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0) |
|
correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1) |
|
correct_0to1[:, 0] = False |
|
|
|
|
|
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device) |
|
b_ids, i_ids = torch.where(correct_0to1 != 0) |
|
j_ids = nearest_index1[b_ids, i_ids] |
|
|
|
conf_matrix_gt[b_ids, i_ids, j_ids] = 1 |
|
data.update({'conf_matrix_gt': conf_matrix_gt}) |
|
|
|
|
|
if len(b_ids) == 0: |
|
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}") |
|
|
|
b_ids = torch.tensor([0], device=device) |
|
i_ids = torch.tensor([0], device=device) |
|
j_ids = torch.tensor([0], device=device) |
|
|
|
data.update({ |
|
'spv_b_ids': b_ids, |
|
'spv_i_ids': i_ids, |
|
'spv_j_ids': j_ids |
|
}) |
|
|
|
|
|
data.update({ |
|
'spv_w_pt0_i': w_pt0_i, |
|
'spv_pt1_i': grid_pt1_i |
|
}) |
|
|
|
|
|
def compute_supervision_coarse(data, config): |
|
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!" |
|
data_source = data['dataset_name'][0] |
|
if data_source.lower() in ['scannet', 'megadepth']: |
|
spvs_coarse(data, config) |
|
else: |
|
raise ValueError(f'Unknown data source: {data_source}') |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def spvs_fine(data, config): |
|
""" |
|
Update: |
|
data (dict):{ |
|
"expec_f_gt": [M, 2]} |
|
""" |
|
|
|
|
|
w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i'] |
|
scale = config['MODEL']['RESOLUTION'][1] |
|
radius = config['MODEL']['FINE_WINDOW_SIZE'] // 2 |
|
|
|
|
|
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids'] |
|
|
|
|
|
scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale |
|
|
|
expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius |
|
data.update({"expec_f_gt": expec_f_gt}) |
|
|
|
|
|
def compute_supervision_fine(data, config): |
|
data_source = data['dataset_name'][0] |
|
if data_source.lower() in ['scannet', 'megadepth']: |
|
spvs_fine(data, config) |
|
else: |
|
raise NotImplementedError |
|
|