|
|
|
""" |
|
[Copied from detectron2] |
|
This file contains primitives for multi-gpu communication. |
|
This is useful when doing distributed training. |
|
""" |
|
|
|
import functools |
|
import logging |
|
import numpy as np |
|
import pickle |
|
import torch |
|
import torch.distributed as dist |
|
|
|
_LOCAL_PROCESS_GROUP = None |
|
""" |
|
A torch process group which only includes processes that on the same machine as the current process. |
|
This variable is set when processes are spawned by `launch()` in "engine/launch.py". |
|
""" |
|
|
|
|
|
def get_world_size() -> int: |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank() -> int: |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def get_local_rank() -> int: |
|
""" |
|
Returns: |
|
The rank of the current process within the local (per-machine) process group. |
|
""" |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
assert _LOCAL_PROCESS_GROUP is not None |
|
return dist.get_rank(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def get_local_size() -> int: |
|
""" |
|
Returns: |
|
The size of the per-machine process group, |
|
i.e. the number of processes per machine. |
|
""" |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) |
|
|
|
|
|
def is_main_process() -> bool: |
|
return get_rank() == 0 |
|
|
|
|
|
def synchronize(): |
|
""" |
|
Helper function to synchronize (barrier) among all processes when |
|
using distributed training |
|
""" |
|
if not dist.is_available(): |
|
return |
|
if not dist.is_initialized(): |
|
return |
|
world_size = dist.get_world_size() |
|
if world_size == 1: |
|
return |
|
dist.barrier() |
|
|
|
|
|
@functools.lru_cache() |
|
def _get_global_gloo_group(): |
|
""" |
|
Return a process group based on gloo backend, containing all the ranks |
|
The result is cached. |
|
""" |
|
if dist.get_backend() == "nccl": |
|
return dist.new_group(backend="gloo") |
|
else: |
|
return dist.group.WORLD |
|
|
|
|
|
def _serialize_to_tensor(data, group): |
|
backend = dist.get_backend(group) |
|
assert backend in ["gloo", "nccl"] |
|
device = torch.device("cpu" if backend == "gloo" else "cuda") |
|
|
|
buffer = pickle.dumps(data) |
|
if len(buffer) > 1024 ** 3: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
"Rank {} trying to all-gather {:.2f} GB of data on device {}".format( |
|
get_rank(), len(buffer) / (1024 ** 3), device |
|
) |
|
) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to(device=device) |
|
return tensor |
|
|
|
|
|
def _pad_to_largest_tensor(tensor, group): |
|
""" |
|
Returns: |
|
list[int]: size of the tensor, on each rank |
|
Tensor: padded tensor that has the max size |
|
""" |
|
world_size = dist.get_world_size(group=group) |
|
assert ( |
|
world_size >= 1 |
|
), "comm.gather/all_gather must be called from ranks within the given group!" |
|
local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device) |
|
size_list = [ |
|
torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) |
|
] |
|
dist.all_gather(size_list, local_size, group=group) |
|
|
|
size_list = [int(size.item()) for size in size_list] |
|
|
|
max_size = max(size_list) |
|
|
|
|
|
|
|
if local_size != max_size: |
|
padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device) |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
return size_list, tensor |
|
|
|
|
|
def all_gather(data, group=None): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors). |
|
|
|
Args: |
|
data: any picklable object |
|
group: a torch process group. By default, will use a group which |
|
contains all ranks on gloo backend. |
|
|
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
if get_world_size() == 1: |
|
return [data] |
|
if group is None: |
|
group = _get_global_gloo_group() |
|
if dist.get_world_size(group) == 1: |
|
return [data] |
|
|
|
tensor = _serialize_to_tensor(data, group) |
|
|
|
size_list, tensor = _pad_to_largest_tensor(tensor, group) |
|
max_size = max(size_list) |
|
|
|
|
|
tensor_list = [ |
|
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list |
|
] |
|
dist.all_gather(tensor_list, tensor, group=group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def gather(data, dst=0, group=None): |
|
""" |
|
Run gather on arbitrary picklable data (not necessarily tensors). |
|
|
|
Args: |
|
data: any picklable object |
|
dst (int): destination rank |
|
group: a torch process group. By default, will use a group which |
|
contains all ranks on gloo backend. |
|
|
|
Returns: |
|
list[data]: on dst, a list of data gathered from each rank. Otherwise, |
|
an empty list. |
|
""" |
|
if get_world_size() == 1: |
|
return [data] |
|
if group is None: |
|
group = _get_global_gloo_group() |
|
if dist.get_world_size(group=group) == 1: |
|
return [data] |
|
rank = dist.get_rank(group=group) |
|
|
|
tensor = _serialize_to_tensor(data, group) |
|
size_list, tensor = _pad_to_largest_tensor(tensor, group) |
|
|
|
|
|
if rank == dst: |
|
max_size = max(size_list) |
|
tensor_list = [ |
|
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list |
|
] |
|
dist.gather(tensor, tensor_list, dst=dst, group=group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
return data_list |
|
else: |
|
dist.gather(tensor, [], dst=dst, group=group) |
|
return [] |
|
|
|
|
|
def shared_random_seed(): |
|
""" |
|
Returns: |
|
int: a random number that is the same across all workers. |
|
If workers need a shared RNG, they can use this shared seed to |
|
create one. |
|
|
|
All workers must call this function, otherwise it will deadlock. |
|
""" |
|
ints = np.random.randint(2 ** 31) |
|
all_ints = all_gather(ints) |
|
return all_ints[0] |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Reduce the values in the dictionary from all processes so that process with rank |
|
0 has the reduced results. |
|
|
|
Args: |
|
input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. |
|
average (bool): whether to do average or sum |
|
|
|
Returns: |
|
a dict with the same keys as input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.reduce(values, dst=0) |
|
if dist.get_rank() == 0 and average: |
|
|
|
|
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|