Vincentqyw
update: features and matchers
404d2af
raw
history blame
2.98 kB
import os
import cv2
import argparse
import numpy as np
import torch
import torchvision
from torchvision import datasets, transforms
from torch.autograd import Variable
from network_v0.model import PointModel
from datasets.hp_loader import PatchesDataset
from torch.utils.data import DataLoader
from evaluation.evaluate import evaluate_keypoint_net
def main():
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument('--device', default=0, type=int, help='which gpu to run on.')
parser.add_argument('--test_dir', required=True, type=str, help='Test data path.')
opt = parser.parse_args()
torch.manual_seed(0)
use_gpu = torch.cuda.is_available()
if use_gpu:
torch.cuda.set_device(opt.device)
# Load data in 320x240
hp_dataset_320x240 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(320, 240), type='all')
data_loader_320x240 = DataLoader(hp_dataset_320x240,
batch_size=1,
pin_memory=False,
shuffle=False,
num_workers=4,
worker_init_fn=None,
sampler=None)
# Load data in 640x480
hp_dataset_640x480 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(640, 480), type='all')
data_loader_640x480 = DataLoader(hp_dataset_640x480,
batch_size=1,
pin_memory=False,
shuffle=False,
num_workers=4,
worker_init_fn=None,
sampler=None)
# Load model
model = PointModel(is_test=True)
ckpt = torch.load('./checkpoints/PointModel_v0.pth')
model.load_state_dict(ckpt['model_state'])
model = model.eval()
if use_gpu:
model = model.cuda()
print('Evaluating in 320x240, 300 points')
rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net(
data_loader_320x240,
model,
output_shape=(320, 240),
top_k=300)
print('Repeatability: {0:.3f}'.format(rep))
print('Localization Error: {0:.3f}'.format(loc))
print('H-1 Accuracy: {:.3f}'.format(c1))
print('H-3 Accuracy: {:.3f}'.format(c3))
print('H-5 Accuracy: {:.3f}'.format(c5))
print('Matching Score: {:.3f}'.format(mscore))
print('\n')
print('Evaluating in 640x480, 1000 points')
rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net(
data_loader_640x480,
model,
output_shape=(640, 480),
top_k=1000)
print('Repeatability: {0:.3f}'.format(rep))
print('Localization Error: {0:.3f}'.format(loc))
print('H-1 Accuracy: {:.3f}'.format(c1))
print('H-3 Accuracy: {:.3f}'.format(c3))
print('H-5 Accuracy: {:.3f}'.format(c5))
print('Matching Score: {:.3f}'.format(mscore))
print('\n')
if __name__ == '__main__':
main()