|
""" |
|
Inference model of SuperPoint, a feature detector and descriptor. |
|
|
|
Described in: |
|
SuperPoint: Self-Supervised Interest Point Detection and Description, |
|
Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich, CVPRW 2018. |
|
|
|
Original code: github.com/MagicLeapResearch/SuperPointPretrainedNetwork |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .. import GLUESTICK_ROOT |
|
from ..models.base_model import BaseModel |
|
|
|
|
|
def simple_nms(scores, radius): |
|
"""Perform non maximum suppression on the heatmap using max-pooling. |
|
This method does not suppress contiguous points that have the same score. |
|
Args: |
|
scores: the score heatmap of size `(B, H, W)`. |
|
size: an interger scalar, the radius of the NMS window. |
|
""" |
|
|
|
def max_pool(x): |
|
return torch.nn.functional.max_pool2d( |
|
x, kernel_size=radius * 2 + 1, stride=1, padding=radius |
|
) |
|
|
|
zeros = torch.zeros_like(scores) |
|
max_mask = scores == max_pool(scores) |
|
for _ in range(2): |
|
supp_mask = max_pool(max_mask.float()) > 0 |
|
supp_scores = torch.where(supp_mask, zeros, scores) |
|
new_max_mask = supp_scores == max_pool(supp_scores) |
|
max_mask = max_mask | (new_max_mask & (~supp_mask)) |
|
return torch.where(max_mask, scores, zeros) |
|
|
|
|
|
def remove_borders(keypoints, scores, b, h, w): |
|
mask_h = (keypoints[:, 0] >= b) & (keypoints[:, 0] < (h - b)) |
|
mask_w = (keypoints[:, 1] >= b) & (keypoints[:, 1] < (w - b)) |
|
mask = mask_h & mask_w |
|
return keypoints[mask], scores[mask] |
|
|
|
|
|
def top_k_keypoints(keypoints, scores, k): |
|
if k >= len(keypoints): |
|
return keypoints, scores |
|
scores, indices = torch.topk(scores, k, dim=0, sorted=True) |
|
return keypoints[indices], scores |
|
|
|
|
|
def sample_descriptors(keypoints, descriptors, s): |
|
b, c, h, w = descriptors.shape |
|
keypoints = keypoints - s / 2 + 0.5 |
|
keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],).to( |
|
keypoints |
|
)[None] |
|
keypoints = keypoints * 2 - 1 |
|
args = {"align_corners": True} if torch.__version__ >= "1.3" else {} |
|
descriptors = torch.nn.functional.grid_sample( |
|
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args |
|
) |
|
descriptors = torch.nn.functional.normalize( |
|
descriptors.reshape(b, c, -1), p=2, dim=1 |
|
) |
|
return descriptors |
|
|
|
|
|
class SuperPoint(BaseModel): |
|
default_conf = { |
|
"has_detector": True, |
|
"has_descriptor": True, |
|
"descriptor_dim": 256, |
|
|
|
"return_all": False, |
|
"sparse_outputs": True, |
|
"nms_radius": 4, |
|
"detection_threshold": 0.005, |
|
"max_num_keypoints": -1, |
|
"force_num_keypoints": False, |
|
"remove_borders": 4, |
|
} |
|
required_data_keys = ["image"] |
|
|
|
def _init(self, conf): |
|
self.relu = nn.ReLU(inplace=True) |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256 |
|
|
|
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) |
|
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) |
|
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) |
|
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) |
|
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) |
|
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) |
|
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) |
|
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) |
|
|
|
if conf.has_detector: |
|
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) |
|
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) |
|
|
|
if conf.has_descriptor: |
|
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) |
|
self.convDb = nn.Conv2d( |
|
c5, conf.descriptor_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
path = GLUESTICK_ROOT / "resources" / "weights" / "superpoint_v1.pth" |
|
self.load_state_dict(torch.load(str(path)), strict=False) |
|
|
|
def _forward(self, data): |
|
image = data["image"] |
|
if image.shape[1] == 3: |
|
scale = image.new_tensor([0.299, 0.587, 0.114]).view(1, 3, 1, 1) |
|
image = (image * scale).sum(1, keepdim=True) |
|
|
|
|
|
x = self.relu(self.conv1a(image)) |
|
x = self.relu(self.conv1b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv2a(x)) |
|
x = self.relu(self.conv2b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv3a(x)) |
|
x = self.relu(self.conv3b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv4a(x)) |
|
x = self.relu(self.conv4b(x)) |
|
|
|
pred = {} |
|
if self.conf.has_detector and self.conf.max_num_keypoints != 0: |
|
|
|
cPa = self.relu(self.convPa(x)) |
|
scores = self.convPb(cPa) |
|
scores = torch.nn.functional.softmax(scores, 1)[:, :-1] |
|
b, c, h, w = scores.shape |
|
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) |
|
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) |
|
pred["keypoint_scores"] = dense_scores = scores |
|
if self.conf.has_descriptor: |
|
|
|
cDa = self.relu(self.convDa(x)) |
|
all_desc = self.convDb(cDa) |
|
all_desc = torch.nn.functional.normalize(all_desc, p=2, dim=1) |
|
pred["descriptors"] = all_desc |
|
|
|
if self.conf.max_num_keypoints == 0: |
|
b_size = len(image) |
|
device = image.device |
|
return { |
|
"keypoints": torch.empty(b_size, 0, 2, device=device), |
|
"keypoint_scores": torch.empty(b_size, 0, device=device), |
|
"descriptors": torch.empty( |
|
b_size, self.conf.descriptor_dim, 0, device=device |
|
), |
|
"all_descriptors": all_desc, |
|
} |
|
|
|
if self.conf.sparse_outputs: |
|
assert self.conf.has_detector and self.conf.has_descriptor |
|
|
|
scores = simple_nms(scores, self.conf.nms_radius) |
|
|
|
|
|
keypoints = [ |
|
torch.nonzero(s > self.conf.detection_threshold) for s in scores |
|
] |
|
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] |
|
|
|
|
|
keypoints, scores = list( |
|
zip( |
|
*[ |
|
remove_borders(k, s, self.conf.remove_borders, h * 8, w * 8) |
|
for k, s in zip(keypoints, scores) |
|
] |
|
) |
|
) |
|
|
|
|
|
if self.conf.max_num_keypoints > 0: |
|
keypoints, scores = list( |
|
zip( |
|
*[ |
|
top_k_keypoints(k, s, self.conf.max_num_keypoints) |
|
for k, s in zip(keypoints, scores) |
|
] |
|
) |
|
) |
|
|
|
|
|
keypoints = [torch.flip(k, [1]).float() for k in keypoints] |
|
|
|
if self.conf.force_num_keypoints: |
|
_, _, h, w = data["image"].shape |
|
assert self.conf.max_num_keypoints > 0 |
|
scores = list(scores) |
|
for i in range(len(keypoints)): |
|
k, s = keypoints[i], scores[i] |
|
missing = self.conf.max_num_keypoints - len(k) |
|
if missing > 0: |
|
new_k = torch.rand(missing, 2).to(k) |
|
new_k = new_k * k.new_tensor([[w - 1, h - 1]]) |
|
new_s = torch.zeros(missing).to(s) |
|
keypoints[i] = torch.cat([k, new_k], 0) |
|
scores[i] = torch.cat([s, new_s], 0) |
|
|
|
|
|
desc = [ |
|
sample_descriptors(k[None], d[None], 8)[0] |
|
for k, d in zip(keypoints, all_desc) |
|
] |
|
|
|
if (len(keypoints) == 1) or self.conf.force_num_keypoints: |
|
keypoints = torch.stack(keypoints, 0) |
|
scores = torch.stack(scores, 0) |
|
desc = torch.stack(desc, 0) |
|
|
|
pred = { |
|
"keypoints": keypoints, |
|
"keypoint_scores": scores, |
|
"descriptors": desc, |
|
} |
|
|
|
if self.conf.return_all: |
|
pred["all_descriptors"] = all_desc |
|
pred["dense_score"] = dense_scores |
|
else: |
|
del all_desc |
|
torch.cuda.empty_cache() |
|
|
|
return pred |
|
|
|
def loss(self, pred, data): |
|
raise NotImplementedError |
|
|
|
def metrics(self, pred, data): |
|
raise NotImplementedError |
|
|