|
import torch |
|
import torch.nn as nn |
|
import kornia |
|
from types import SimpleNamespace |
|
from .utils import ImagePreprocessor |
|
|
|
|
|
class DISK(nn.Module): |
|
default_conf = { |
|
"weights": "depth", |
|
"max_num_keypoints": None, |
|
"desc_dim": 128, |
|
"nms_window_size": 5, |
|
"detection_threshold": 0.0, |
|
"pad_if_not_divisible": True, |
|
} |
|
|
|
preprocess_conf = { |
|
**ImagePreprocessor.default_conf, |
|
"resize": 1024, |
|
"grayscale": False, |
|
} |
|
|
|
required_data_keys = ["image"] |
|
|
|
def __init__(self, **conf) -> None: |
|
super().__init__() |
|
self.conf = {**self.default_conf, **conf} |
|
self.conf = SimpleNamespace(**self.conf) |
|
self.model = kornia.feature.DISK.from_pretrained(self.conf.weights) |
|
|
|
def forward(self, data: dict) -> dict: |
|
"""Compute keypoints, scores, descriptors for image""" |
|
for key in self.required_data_keys: |
|
assert key in data, f"Missing key {key} in data" |
|
image = data["image"] |
|
features = self.model( |
|
image, |
|
n=self.conf.max_num_keypoints, |
|
window_size=self.conf.nms_window_size, |
|
score_threshold=self.conf.detection_threshold, |
|
pad_if_not_divisible=self.conf.pad_if_not_divisible, |
|
) |
|
keypoints = [f.keypoints for f in features] |
|
scores = [f.detection_scores for f in features] |
|
descriptors = [f.descriptors for f in features] |
|
del features |
|
|
|
keypoints = torch.stack(keypoints, 0) |
|
scores = torch.stack(scores, 0) |
|
descriptors = torch.stack(descriptors, 0) |
|
|
|
return { |
|
"keypoints": keypoints.to(image), |
|
"keypoint_scores": scores.to(image), |
|
"descriptors": descriptors.to(image), |
|
} |
|
|
|
def extract(self, img: torch.Tensor, **conf) -> dict: |
|
"""Perform extraction with online resizing""" |
|
if img.dim() == 3: |
|
img = img[None] |
|
assert img.dim() == 4 and img.shape[0] == 1 |
|
shape = img.shape[-2:][::-1] |
|
img, scales = ImagePreprocessor(**{**self.preprocess_conf, **conf})(img) |
|
feats = self.forward({"image": img}) |
|
feats["image_size"] = torch.tensor(shape)[None].to(img).float() |
|
feats["keypoints"] = (feats["keypoints"] + 0.5) / scales[None] - 0.5 |
|
return feats |
|
|