|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution without padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False |
|
) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_planes, planes, stride=1, bn=True): |
|
super().__init__() |
|
self.conv = conv3x3(in_planes, planes, stride) |
|
self.bn = nn.BatchNorm2d(planes) if bn is True else None |
|
self.act = nn.GELU() |
|
|
|
def forward(self, x): |
|
y = self.conv(x) |
|
if self.bn: |
|
y = self.bn(y) |
|
y = self.act(y) |
|
return y |
|
|
|
|
|
class FPN(nn.Module): |
|
""" |
|
ResNet+FPN, output resolution are 1/8 and 1/2. |
|
Each block has 2 layers. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
block = ConvBlock |
|
initial_dim = config["initial_dim"] |
|
block_dims = config["block_dims"] |
|
|
|
|
|
self.in_planes = initial_dim |
|
|
|
|
|
self.conv1 = nn.Conv2d( |
|
1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(initial_dim) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, block_dims[0], stride=1) |
|
self.layer2 = self._make_layer(block, block_dims[1], stride=2) |
|
self.layer3 = self._make_layer(block, block_dims[2], stride=2) |
|
self.layer4 = self._make_layer(block, block_dims[3], stride=2) |
|
|
|
|
|
self.layer3_outconv = conv1x1(block_dims[2], block_dims[3]) |
|
self.layer3_outconv2 = nn.Sequential( |
|
ConvBlock(block_dims[3], block_dims[2]), |
|
conv3x3(block_dims[2], block_dims[2]), |
|
) |
|
self.layer2_outconv = conv1x1(block_dims[1], block_dims[2]) |
|
self.layer2_outconv2 = nn.Sequential( |
|
ConvBlock(block_dims[2], block_dims[1]), |
|
conv3x3(block_dims[1], block_dims[1]), |
|
) |
|
self.layer1_outconv = conv1x1(block_dims[0], block_dims[1]) |
|
self.layer1_outconv2 = nn.Sequential( |
|
ConvBlock(block_dims[1], block_dims[0]), |
|
conv3x3(block_dims[0], block_dims[0]), |
|
) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, dim, stride=1): |
|
layer1 = block(self.in_planes, dim, stride=stride) |
|
layer2 = block(dim, dim, stride=1) |
|
layers = (layer1, layer2) |
|
|
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
x0 = self.relu(self.bn1(self.conv1(x))) |
|
x1 = self.layer1(x0) |
|
x2 = self.layer2(x1) |
|
x3 = self.layer3(x2) |
|
x4 = self.layer4(x3) |
|
|
|
|
|
x4_out_2x = F.interpolate( |
|
x4, scale_factor=2.0, mode="bilinear", align_corners=True |
|
) |
|
x3_out = self.layer3_outconv(x3) |
|
x3_out = self.layer3_outconv2(x3_out + x4_out_2x) |
|
|
|
x3_out_2x = F.interpolate( |
|
x3_out, scale_factor=2.0, mode="bilinear", align_corners=True |
|
) |
|
x2_out = self.layer2_outconv(x2) |
|
x2_out = self.layer2_outconv2(x2_out + x3_out_2x) |
|
|
|
x2_out_2x = F.interpolate( |
|
x2_out, scale_factor=2.0, mode="bilinear", align_corners=True |
|
) |
|
x1_out = self.layer1_outconv(x1) |
|
x1_out = self.layer1_outconv2(x1_out + x2_out_2x) |
|
|
|
return [x3_out, x1_out] |
|
|