|
import torch |
|
import torch.nn as nn |
|
import time |
|
|
|
|
|
eps = 1e-8 |
|
|
|
|
|
def sinkhorn(M, r, c, iteration): |
|
p = torch.softmax(M, dim=-1) |
|
u = torch.ones_like(r) |
|
v = torch.ones_like(c) |
|
for _ in range(iteration): |
|
u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps) |
|
v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps) |
|
p = p * u.unsqueeze(-1) * v.unsqueeze(-2) |
|
return p |
|
|
|
|
|
def sink_algorithm(M, dustbin, iteration): |
|
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1) |
|
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2) |
|
r = torch.ones([M.shape[0], M.shape[1] - 1], device="cuda") |
|
r = torch.cat([r, torch.ones([M.shape[0], 1], device="cuda") * M.shape[1]], dim=-1) |
|
c = torch.ones([M.shape[0], M.shape[2] - 1], device="cuda") |
|
c = torch.cat([c, torch.ones([M.shape[0], 1], device="cuda") * M.shape[2]], dim=-1) |
|
p = sinkhorn(M, r, c, iteration) |
|
return p |
|
|
|
|
|
class attention_block(nn.Module): |
|
def __init__(self, channels, head, type): |
|
assert type == "self" or type == "cross", "invalid attention type" |
|
nn.Module.__init__(self) |
|
self.head = head |
|
self.type = type |
|
self.head_dim = channels // head |
|
self.query_filter = nn.Conv1d(channels, channels, kernel_size=1) |
|
self.key_filter = nn.Conv1d(channels, channels, kernel_size=1) |
|
self.value_filter = nn.Conv1d(channels, channels, kernel_size=1) |
|
self.attention_filter = nn.Sequential( |
|
nn.Conv1d(2 * channels, 2 * channels, kernel_size=1), |
|
nn.SyncBatchNorm(2 * channels), |
|
nn.ReLU(), |
|
nn.Conv1d(2 * channels, channels, kernel_size=1), |
|
) |
|
self.mh_filter = nn.Conv1d(channels, channels, kernel_size=1) |
|
|
|
def forward(self, fea1, fea2): |
|
batch_size, n, m = fea1.shape[0], fea1.shape[2], fea2.shape[2] |
|
query1, key1, value1 = ( |
|
self.query_filter(fea1).view(batch_size, self.head_dim, self.head, -1), |
|
self.key_filter(fea1).view(batch_size, self.head_dim, self.head, -1), |
|
self.value_filter(fea1).view(batch_size, self.head_dim, self.head, -1), |
|
) |
|
query2, key2, value2 = ( |
|
self.query_filter(fea2).view(batch_size, self.head_dim, self.head, -1), |
|
self.key_filter(fea2).view(batch_size, self.head_dim, self.head, -1), |
|
self.value_filter(fea2).view(batch_size, self.head_dim, self.head, -1), |
|
) |
|
if self.type == "self": |
|
score1, score2 = torch.softmax( |
|
torch.einsum("bdhn,bdhm->bhnm", query1, key1) / self.head_dim**0.5, |
|
dim=-1, |
|
), torch.softmax( |
|
torch.einsum("bdhn,bdhm->bhnm", query2, key2) / self.head_dim**0.5, |
|
dim=-1, |
|
) |
|
add_value1, add_value2 = torch.einsum( |
|
"bhnm,bdhm->bdhn", score1, value1 |
|
), torch.einsum("bhnm,bdhm->bdhn", score2, value2) |
|
else: |
|
score1, score2 = torch.softmax( |
|
torch.einsum("bdhn,bdhm->bhnm", query1, key2) / self.head_dim**0.5, |
|
dim=-1, |
|
), torch.softmax( |
|
torch.einsum("bdhn,bdhm->bhnm", query2, key1) / self.head_dim**0.5, |
|
dim=-1, |
|
) |
|
add_value1, add_value2 = torch.einsum( |
|
"bhnm,bdhm->bdhn", score1, value2 |
|
), torch.einsum("bhnm,bdhm->bdhn", score2, value1) |
|
add_value1, add_value2 = self.mh_filter( |
|
add_value1.contiguous().view(batch_size, self.head * self.head_dim, n) |
|
), self.mh_filter( |
|
add_value2.contiguous().view(batch_size, self.head * self.head_dim, m) |
|
) |
|
fea11, fea22 = torch.cat([fea1, add_value1], dim=1), torch.cat( |
|
[fea2, add_value2], dim=1 |
|
) |
|
fea1, fea2 = fea1 + self.attention_filter(fea11), fea2 + self.attention_filter( |
|
fea22 |
|
) |
|
|
|
return fea1, fea2 |
|
|
|
|
|
class matcher(nn.Module): |
|
def __init__(self, config): |
|
nn.Module.__init__(self) |
|
self.use_score_encoding = config.use_score_encoding |
|
self.layer_num = config.layer_num |
|
self.sink_iter = config.sink_iter |
|
self.position_encoder = nn.Sequential( |
|
nn.Conv1d(3, 32, kernel_size=1) |
|
if config.use_score_encoding |
|
else nn.Conv1d(2, 32, kernel_size=1), |
|
nn.SyncBatchNorm(32), |
|
nn.ReLU(), |
|
nn.Conv1d(32, 64, kernel_size=1), |
|
nn.SyncBatchNorm(64), |
|
nn.ReLU(), |
|
nn.Conv1d(64, 128, kernel_size=1), |
|
nn.SyncBatchNorm(128), |
|
nn.ReLU(), |
|
nn.Conv1d(128, 256, kernel_size=1), |
|
nn.SyncBatchNorm(256), |
|
nn.ReLU(), |
|
nn.Conv1d(256, config.net_channels, kernel_size=1), |
|
) |
|
|
|
self.dustbin = nn.Parameter(torch.tensor(1, dtype=torch.float32, device="cuda")) |
|
self.self_attention_block = nn.Sequential( |
|
*[ |
|
attention_block(config.net_channels, config.head, "self") |
|
for _ in range(config.layer_num) |
|
] |
|
) |
|
self.cross_attention_block = nn.Sequential( |
|
*[ |
|
attention_block(config.net_channels, config.head, "cross") |
|
for _ in range(config.layer_num) |
|
] |
|
) |
|
self.final_project = nn.Conv1d( |
|
config.net_channels, config.net_channels, kernel_size=1 |
|
) |
|
|
|
def forward(self, data, test_mode=True): |
|
desc1, desc2 = data["desc1"], data["desc2"] |
|
desc1, desc2 = torch.nn.functional.normalize( |
|
desc1, dim=-1 |
|
), torch.nn.functional.normalize(desc2, dim=-1) |
|
desc1, desc2 = desc1.transpose(1, 2), desc2.transpose(1, 2) |
|
if test_mode: |
|
encode_x1, encode_x2 = data["x1"], data["x2"] |
|
else: |
|
encode_x1, encode_x2 = data["aug_x1"], data["aug_x2"] |
|
if not self.use_score_encoding: |
|
encode_x1, encode_x2 = encode_x1[:, :, :2], encode_x2[:, :, :2] |
|
|
|
encode_x1, encode_x2 = encode_x1.transpose(1, 2), encode_x2.transpose(1, 2) |
|
|
|
x1_pos_embedding, x2_pos_embedding = self.position_encoder( |
|
encode_x1 |
|
), self.position_encoder(encode_x2) |
|
aug_desc1, aug_desc2 = x1_pos_embedding + desc1, x2_pos_embedding + desc2 |
|
for i in range(self.layer_num): |
|
aug_desc1, aug_desc2 = self.self_attention_block[i](aug_desc1, aug_desc2) |
|
aug_desc1, aug_desc2 = self.cross_attention_block[i](aug_desc1, aug_desc2) |
|
|
|
aug_desc1, aug_desc2 = self.final_project(aug_desc1), self.final_project( |
|
aug_desc2 |
|
) |
|
desc_mat = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2) |
|
p = sink_algorithm(desc_mat, self.dustbin, self.sink_iter[0]) |
|
return {"p": p} |
|
|