|
""" |
|
3D visualization based on plotly. |
|
Works for a small number of points and cameras, might be slow otherwise. |
|
|
|
1) Initialize a figure with `init_figure` |
|
2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction |
|
|
|
Written by Paul-Edouard Sarlin and Philipp Lindenberger. |
|
""" |
|
|
|
from typing import Optional |
|
import numpy as np |
|
import pycolmap |
|
import plotly.graph_objects as go |
|
|
|
|
|
def to_homogeneous(points): |
|
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) |
|
return np.concatenate([points, pad], axis=-1) |
|
|
|
|
|
def init_figure(height: int = 800) -> go.Figure: |
|
"""Initialize a 3D figure.""" |
|
fig = go.Figure() |
|
axes = dict( |
|
visible=False, |
|
showbackground=False, |
|
showgrid=False, |
|
showline=False, |
|
showticklabels=True, |
|
autorange=True, |
|
) |
|
fig.update_layout( |
|
template="plotly_dark", |
|
height=height, |
|
scene_camera=dict( |
|
eye=dict(x=0.0, y=-0.1, z=-2), |
|
up=dict(x=0, y=-1.0, z=0), |
|
projection=dict(type="orthographic"), |
|
), |
|
scene=dict( |
|
xaxis=axes, |
|
yaxis=axes, |
|
zaxis=axes, |
|
aspectmode="data", |
|
dragmode="orbit", |
|
), |
|
margin=dict(l=0, r=0, b=0, t=0, pad=0), |
|
legend=dict(orientation="h", yanchor="top", y=0.99, xanchor="left", x=0.1), |
|
) |
|
return fig |
|
|
|
|
|
def plot_points( |
|
fig: go.Figure, |
|
pts: np.ndarray, |
|
color: str = "rgba(255, 0, 0, 1)", |
|
ps: int = 2, |
|
colorscale: Optional[str] = None, |
|
name: Optional[str] = None, |
|
): |
|
"""Plot a set of 3D points.""" |
|
x, y, z = pts.T |
|
tr = go.Scatter3d( |
|
x=x, |
|
y=y, |
|
z=z, |
|
mode="markers", |
|
name=name, |
|
legendgroup=name, |
|
marker=dict(size=ps, color=color, line_width=0.0, colorscale=colorscale), |
|
) |
|
fig.add_trace(tr) |
|
|
|
|
|
def plot_camera( |
|
fig: go.Figure, |
|
R: np.ndarray, |
|
t: np.ndarray, |
|
K: np.ndarray, |
|
color: str = "rgb(0, 0, 255)", |
|
name: Optional[str] = None, |
|
legendgroup: Optional[str] = None, |
|
size: float = 1.0, |
|
): |
|
"""Plot a camera frustum from pose and intrinsic matrix.""" |
|
W, H = K[0, 2] * 2, K[1, 2] * 2 |
|
corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]]) |
|
if size is not None: |
|
image_extent = max(size * W / 1024.0, size * H / 1024.0) |
|
world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5 |
|
scale = 0.5 * image_extent / world_extent |
|
else: |
|
scale = 1.0 |
|
corners = to_homogeneous(corners) @ np.linalg.inv(K).T |
|
corners = (corners / 2 * scale) @ R.T + t |
|
|
|
x, y, z = corners.T |
|
rect = go.Scatter3d( |
|
x=x, |
|
y=y, |
|
z=z, |
|
line=dict(color=color), |
|
legendgroup=legendgroup, |
|
name=name, |
|
marker=dict(size=0.0001), |
|
showlegend=False, |
|
) |
|
fig.add_trace(rect) |
|
|
|
x, y, z = np.concatenate(([t], corners)).T |
|
i = [0, 0, 0, 0] |
|
j = [1, 2, 3, 4] |
|
k = [2, 3, 4, 1] |
|
|
|
pyramid = go.Mesh3d( |
|
x=x, |
|
y=y, |
|
z=z, |
|
color=color, |
|
i=i, |
|
j=j, |
|
k=k, |
|
legendgroup=legendgroup, |
|
name=name, |
|
showlegend=False, |
|
) |
|
fig.add_trace(pyramid) |
|
triangles = np.vstack((i, j, k)).T |
|
vertices = np.concatenate(([t], corners)) |
|
tri_points = np.array([vertices[i] for i in triangles.reshape(-1)]) |
|
|
|
x, y, z = tri_points.T |
|
pyramid = go.Scatter3d( |
|
x=x, |
|
y=y, |
|
z=z, |
|
mode="lines", |
|
legendgroup=legendgroup, |
|
name=name, |
|
line=dict(color=color, width=1), |
|
showlegend=False, |
|
) |
|
fig.add_trace(pyramid) |
|
|
|
|
|
def plot_camera_colmap( |
|
fig: go.Figure, |
|
image: pycolmap.Image, |
|
camera: pycolmap.Camera, |
|
name: Optional[str] = None, |
|
**kwargs |
|
): |
|
"""Plot a camera frustum from PyCOLMAP objects""" |
|
plot_camera( |
|
fig, |
|
image.rotmat().T, |
|
image.projection_center(), |
|
camera.calibration_matrix(), |
|
name=name or str(image.image_id), |
|
**kwargs |
|
) |
|
|
|
|
|
def plot_cameras(fig: go.Figure, reconstruction: pycolmap.Reconstruction, **kwargs): |
|
"""Plot a camera as a cone with camera frustum.""" |
|
for image_id, image in reconstruction.images.items(): |
|
plot_camera_colmap( |
|
fig, image, reconstruction.cameras[image.camera_id], **kwargs |
|
) |
|
|
|
|
|
def plot_reconstruction( |
|
fig: go.Figure, |
|
rec: pycolmap.Reconstruction, |
|
max_reproj_error: float = 6.0, |
|
color: str = "rgb(0, 0, 255)", |
|
name: Optional[str] = None, |
|
min_track_length: int = 2, |
|
points: bool = True, |
|
cameras: bool = True, |
|
cs: float = 1.0, |
|
): |
|
|
|
bbs = rec.compute_bounding_box(0.001, 0.999) |
|
|
|
xyzs = [ |
|
p3D.xyz |
|
for _, p3D in rec.points3D.items() |
|
if ( |
|
(p3D.xyz >= bbs[0]).all() |
|
and (p3D.xyz <= bbs[1]).all() |
|
and p3D.error <= max_reproj_error |
|
and p3D.track.length() >= min_track_length |
|
) |
|
] |
|
if points: |
|
plot_points(fig, np.array(xyzs), color=color, ps=1, name=name) |
|
if cameras: |
|
plot_cameras(fig, rec, color=color, legendgroup=name, size=cs) |
|
|