|
import argparse |
|
|
|
import numpy as np |
|
|
|
import imageio |
|
|
|
import torch |
|
|
|
from tqdm import tqdm |
|
|
|
import scipy |
|
import scipy.io |
|
import scipy.misc |
|
|
|
from lib.model_test import D2Net |
|
from lib.utils import preprocess_image |
|
from lib.pyramid import process_multiscale |
|
|
|
|
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if use_cuda else "cpu") |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Feature extraction script") |
|
|
|
parser.add_argument( |
|
"--image_list_file", |
|
type=str, |
|
required=True, |
|
help="path to a file containing a list of images to process", |
|
) |
|
|
|
parser.add_argument( |
|
"--preprocessing", |
|
type=str, |
|
default="caffe", |
|
help="image preprocessing (caffe or torch)", |
|
) |
|
parser.add_argument( |
|
"--model_file", type=str, default="models/d2_tf.pth", help="path to the full model" |
|
) |
|
|
|
parser.add_argument( |
|
"--max_edge", type=int, default=1600, help="maximum image size at network input" |
|
) |
|
parser.add_argument( |
|
"--max_sum_edges", |
|
type=int, |
|
default=2800, |
|
help="maximum sum of image sizes at network input", |
|
) |
|
|
|
parser.add_argument( |
|
"--output_extension", type=str, default=".d2-net", help="extension for the output" |
|
) |
|
parser.add_argument( |
|
"--output_type", type=str, default="npz", help="output file type (npz or mat)" |
|
) |
|
|
|
parser.add_argument( |
|
"--multiscale", |
|
dest="multiscale", |
|
action="store_true", |
|
help="extract multiscale features", |
|
) |
|
parser.set_defaults(multiscale=False) |
|
|
|
parser.add_argument( |
|
"--no-relu", |
|
dest="use_relu", |
|
action="store_false", |
|
help="remove ReLU after the dense feature extraction module", |
|
) |
|
parser.set_defaults(use_relu=True) |
|
|
|
args = parser.parse_args() |
|
|
|
print(args) |
|
|
|
|
|
model = D2Net(model_file=args.model_file, use_relu=args.use_relu, use_cuda=use_cuda) |
|
|
|
|
|
with open(args.image_list_file, "r") as f: |
|
lines = f.readlines() |
|
for line in tqdm(lines, total=len(lines)): |
|
path = line.strip() |
|
|
|
image = imageio.imread(path) |
|
if len(image.shape) == 2: |
|
image = image[:, :, np.newaxis] |
|
image = np.repeat(image, 3, -1) |
|
|
|
|
|
resized_image = image |
|
if max(resized_image.shape) > args.max_edge: |
|
resized_image = scipy.misc.imresize( |
|
resized_image, args.max_edge / max(resized_image.shape) |
|
).astype("float") |
|
if sum(resized_image.shape[:2]) > args.max_sum_edges: |
|
resized_image = scipy.misc.imresize( |
|
resized_image, args.max_sum_edges / sum(resized_image.shape[:2]) |
|
).astype("float") |
|
|
|
fact_i = image.shape[0] / resized_image.shape[0] |
|
fact_j = image.shape[1] / resized_image.shape[1] |
|
|
|
input_image = preprocess_image(resized_image, preprocessing=args.preprocessing) |
|
with torch.no_grad(): |
|
if args.multiscale: |
|
keypoints, scores, descriptors = process_multiscale( |
|
torch.tensor( |
|
input_image[np.newaxis, :, :, :].astype(np.float32), device=device |
|
), |
|
model, |
|
) |
|
else: |
|
keypoints, scores, descriptors = process_multiscale( |
|
torch.tensor( |
|
input_image[np.newaxis, :, :, :].astype(np.float32), device=device |
|
), |
|
model, |
|
scales=[1], |
|
) |
|
|
|
|
|
keypoints[:, 0] *= fact_i |
|
keypoints[:, 1] *= fact_j |
|
|
|
keypoints = keypoints[:, [1, 0, 2]] |
|
|
|
if args.output_type == "npz": |
|
with open(path + args.output_extension, "wb") as output_file: |
|
np.savez( |
|
output_file, keypoints=keypoints, scores=scores, descriptors=descriptors |
|
) |
|
elif args.output_type == "mat": |
|
with open(path + args.output_extension, "wb") as output_file: |
|
scipy.io.savemat( |
|
output_file, |
|
{"keypoints": keypoints, "scores": scores, "descriptors": descriptors}, |
|
) |
|
else: |
|
raise ValueError("Unknown output type.") |
|
|