|
import pickle |
|
import h5py |
|
import numpy as np |
|
import torch |
|
from dkm.utils import * |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
class Yfcc100mBenchmark: |
|
def __init__(self, data_root="data/yfcc100m_test") -> None: |
|
self.scenes = [ |
|
"buckingham_palace", |
|
"notre_dame_front_facade", |
|
"reichstag", |
|
"sacre_coeur", |
|
] |
|
self.data_root = data_root |
|
|
|
def benchmark(self, model, r=2): |
|
model.train(False) |
|
with torch.no_grad(): |
|
data_root = self.data_root |
|
meta_info = open( |
|
f"{data_root}/yfcc_test_pairs_with_gt.txt", "r" |
|
).readlines() |
|
tot_e_t, tot_e_R, tot_e_pose = [], [], [] |
|
for scene_ind in range(len(self.scenes)): |
|
scene = self.scenes[scene_ind] |
|
pairs = np.array( |
|
pickle.load( |
|
open(f"{data_root}/pairs/{scene}-te-1000-pairs.pkl", "rb") |
|
) |
|
) |
|
scene_dir = f"{data_root}/yfcc100m/{scene}/test/" |
|
calibs = open(scene_dir + "calibration.txt", "r").read().split("\n") |
|
images = open(scene_dir + "images.txt", "r").read().split("\n") |
|
pair_inds = np.random.choice( |
|
range(len(pairs)), size=len(pairs), replace=False |
|
) |
|
for pairind in tqdm(pair_inds): |
|
idx1, idx2 = pairs[pairind] |
|
params = meta_info[1000 * scene_ind + pairind].split() |
|
rot1, rot2 = int(params[2]), int(params[3]) |
|
calib1 = h5py.File(scene_dir + calibs[idx1], "r") |
|
K1, R1, t1, _, _ = get_pose(calib1) |
|
calib2 = h5py.File(scene_dir + calibs[idx2], "r") |
|
K2, R2, t2, _, _ = get_pose(calib2) |
|
|
|
R, t = compute_relative_pose(R1, t1, R2, t2) |
|
im1 = images[idx1] |
|
im2 = images[idx2] |
|
im1 = Image.open(scene_dir + im1).rotate(rot1 * 90, expand=True) |
|
w1, h1 = im1.size |
|
im2 = Image.open(scene_dir + im2).rotate(rot2 * 90, expand=True) |
|
w2, h2 = im2.size |
|
K1 = rotate_intrinsic(K1, rot1) |
|
K2 = rotate_intrinsic(K2, rot2) |
|
|
|
dense_matches, dense_certainty = model.match(im1, im2) |
|
dense_certainty = dense_certainty ** (1 / r) |
|
sparse_matches, sparse_confidence = model.sample( |
|
dense_matches, dense_certainty, 10000 |
|
) |
|
scale1 = 480 / min(w1, h1) |
|
scale2 = 480 / min(w2, h2) |
|
w1, h1 = scale1 * w1, scale1 * h1 |
|
w2, h2 = scale2 * w2, scale2 * h2 |
|
K1 = K1 * scale1 |
|
K2 = K2 * scale2 |
|
|
|
kpts1 = sparse_matches[:, :2] |
|
kpts1 = np.stack( |
|
(w1 * kpts1[:, 0] / 2, h1 * kpts1[:, 1] / 2), axis=-1 |
|
) |
|
kpts2 = sparse_matches[:, 2:] |
|
kpts2 = np.stack( |
|
(w2 * kpts2[:, 0] / 2, h2 * kpts2[:, 1] / 2), axis=-1 |
|
) |
|
try: |
|
threshold = 1.0 |
|
norm_threshold = threshold / ( |
|
np.mean(np.abs(K1[:2, :2])) + np.mean(np.abs(K2[:2, :2])) |
|
) |
|
R_est, t_est, mask = estimate_pose( |
|
kpts1, |
|
kpts2, |
|
K1[:2, :2], |
|
K2[:2, :2], |
|
norm_threshold, |
|
conf=0.9999999, |
|
) |
|
T1_to_2 = np.concatenate((R_est, t_est), axis=-1) |
|
e_t, e_R = compute_pose_error(T1_to_2, R, t) |
|
e_pose = max(e_t, e_R) |
|
except: |
|
e_t, e_R = 90, 90 |
|
e_pose = max(e_t, e_R) |
|
tot_e_t.append(e_t) |
|
tot_e_R.append(e_R) |
|
tot_e_pose.append(e_pose) |
|
tot_e_pose = np.array(tot_e_pose) |
|
thresholds = [5, 10, 20] |
|
auc = pose_auc(tot_e_pose, thresholds) |
|
acc_5 = (tot_e_pose < 5).mean() |
|
acc_10 = (tot_e_pose < 10).mean() |
|
acc_15 = (tot_e_pose < 15).mean() |
|
acc_20 = (tot_e_pose < 20).mean() |
|
map_5 = acc_5 |
|
map_10 = np.mean([acc_5, acc_10]) |
|
map_20 = np.mean([acc_5, acc_10, acc_15, acc_20]) |
|
return { |
|
"auc_5": auc[0], |
|
"auc_10": auc[1], |
|
"auc_20": auc[2], |
|
"map_5": map_5, |
|
"map_10": map_10, |
|
"map_20": map_20, |
|
} |
|
|