Vincentqyw
fix: roma
8b973ee
raw
history blame
6.06 kB
# Standard libraries
import itertools
import numpy as np
# PyTorch
import torch
import torch.nn as nn
# Local
from . import JPEG_utils
class rgb_to_ycbcr_jpeg(nn.Module):
"""Converts RGB image to YCbCr
Input:
image(tensor): batch x 3 x height x width
Outpput:
result(tensor): batch x height x width x 3
"""
def __init__(self):
super(rgb_to_ycbcr_jpeg, self).__init__()
matrix = np.array(
[
[0.299, 0.587, 0.114],
[-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312],
],
dtype=np.float32,
).T
self.shift = nn.Parameter(torch.tensor([0.0, 128.0, 128.0]))
#
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
image = image.permute(0, 2, 3, 1)
result = torch.tensordot(image, self.matrix, dims=1) + self.shift
# result = torch.from_numpy(result)
result.view(image.shape)
return result
class chroma_subsampling(nn.Module):
"""Chroma subsampling on CbCv channels
Input:
image(tensor): batch x height x width x 3
Output:
y(tensor): batch x height x width
cb(tensor): batch x height/2 x width/2
cr(tensor): batch x height/2 x width/2
"""
def __init__(self):
super(chroma_subsampling, self).__init__()
def forward(self, image):
image_2 = image.permute(0, 3, 1, 2).clone()
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2), count_include_pad=False)
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
cb = cb.permute(0, 2, 3, 1)
cr = cr.permute(0, 2, 3, 1)
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)
class block_splitting(nn.Module):
"""Splitting image into patches
Input:
image(tensor): batch x height x width
Output:
patch(tensor): batch x h*w/64 x h x w
"""
def __init__(self):
super(block_splitting, self).__init__()
self.k = 8
def forward(self, image):
height, width = image.shape[1:3]
# print(height, width)
batch_size = image.shape[0]
# print(image.shape)
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
class dct_8x8(nn.Module):
"""Discrete Cosine Transformation
Input:
image(tensor): batch x height x width
Output:
dcp(tensor): batch x height x width
"""
def __init__(self):
super(dct_8x8, self).__init__()
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
(2 * y + 1) * v * np.pi / 16
)
alpha = np.array([1.0 / np.sqrt(2)] + [1] * 7)
#
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
self.scale = nn.Parameter(
torch.from_numpy(np.outer(alpha, alpha) * 0.25).float()
)
def forward(self, image):
image = image - 128
result = self.scale * torch.tensordot(image, self.tensor, dims=2)
result.view(image.shape)
return result
class y_quantize(nn.Module):
"""JPEG Quantization for Y channel
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(y_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.y_table = JPEG_utils.y_table
def forward(self, image):
image = image.float() / (self.y_table * self.factor)
image = self.rounding(image)
return image
class c_quantize(nn.Module):
"""JPEG Quantization for CrCb channels
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(c_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.c_table = JPEG_utils.c_table
def forward(self, image):
image = image.float() / (self.c_table * self.factor)
image = self.rounding(image)
return image
class compress_jpeg(nn.Module):
"""Full JPEG compression algortihm
Input:
imgs(tensor): batch x 3 x height x width
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
"""
def __init__(self, rounding=torch.round, factor=1):
super(compress_jpeg, self).__init__()
self.l1 = nn.Sequential(
rgb_to_ycbcr_jpeg(),
# comment this line if no subsampling
chroma_subsampling(),
)
self.l2 = nn.Sequential(block_splitting(), dct_8x8())
self.c_quantize = c_quantize(rounding=rounding, factor=factor)
self.y_quantize = y_quantize(rounding=rounding, factor=factor)
def forward(self, image):
y, cb, cr = self.l1(image * 255) # modify
# y, cb, cr = result[:,:,:,0], result[:,:,:,1], result[:,:,:,2]
components = {"y": y, "cb": cb, "cr": cr}
for k in components.keys():
comp = self.l2(components[k])
# print(comp.shape)
if k in ("cb", "cr"):
comp = self.c_quantize(comp)
else:
comp = self.y_quantize(comp)
components[k] = comp
return components["y"], components["cb"], components["cr"]