|
import pytorch_lightning as pl |
|
import argparse |
|
import pprint |
|
from loguru import logger as loguru_logger |
|
|
|
from src.config.default import get_cfg_defaults |
|
from src.utils.profiler import build_profiler |
|
|
|
from src.lightning.data import MultiSceneDataModule |
|
from src.lightning.lightning_aspanformer import PL_ASpanFormer |
|
import torch |
|
|
|
|
|
def parse_args(): |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
parser.add_argument("data_cfg_path", type=str, help="data config path") |
|
parser.add_argument("main_cfg_path", type=str, help="main config path") |
|
parser.add_argument( |
|
"--ckpt_path", |
|
type=str, |
|
default="weights/indoor_ds.ckpt", |
|
help="path to the checkpoint", |
|
) |
|
parser.add_argument( |
|
"--dump_dir", |
|
type=str, |
|
default=None, |
|
help="if set, the matching results will be dump to dump_dir", |
|
) |
|
parser.add_argument( |
|
"--profiler_name", |
|
type=str, |
|
default=None, |
|
help="options: [inference, pytorch], or leave it unset", |
|
) |
|
parser.add_argument("--batch_size", type=int, default=1, help="batch_size per gpu") |
|
parser.add_argument("--num_workers", type=int, default=2) |
|
parser.add_argument( |
|
"--thr", |
|
type=float, |
|
default=None, |
|
help="modify the coarse-level matching threshold.", |
|
) |
|
parser.add_argument( |
|
"--mode", |
|
type=str, |
|
default="vanilla", |
|
help="modify the coarse-level matching threshold.", |
|
) |
|
parser = pl.Trainer.add_argparse_args(parser) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
args = parse_args() |
|
pprint.pprint(vars(args)) |
|
|
|
|
|
config = get_cfg_defaults() |
|
config.merge_from_file(args.main_cfg_path) |
|
config.merge_from_file(args.data_cfg_path) |
|
pl.seed_everything(config.TRAINER.SEED) |
|
|
|
|
|
if args.thr is not None: |
|
config.ASPAN.MATCH_COARSE.THR = args.thr |
|
|
|
loguru_logger.info(f"Args and config initialized!") |
|
|
|
|
|
profiler = build_profiler(args.profiler_name) |
|
model = PL_ASpanFormer( |
|
config, |
|
pretrained_ckpt=args.ckpt_path, |
|
profiler=profiler, |
|
dump_dir=args.dump_dir, |
|
) |
|
loguru_logger.info(f"ASpanFormer-lightning initialized!") |
|
|
|
|
|
data_module = MultiSceneDataModule(args, config) |
|
loguru_logger.info(f"DataModule initialized!") |
|
|
|
|
|
trainer = pl.Trainer.from_argparse_args( |
|
args, replace_sampler_ddp=False, logger=False |
|
) |
|
|
|
loguru_logger.info(f"Start testing!") |
|
trainer.test(model, datamodule=data_module, verbose=False) |
|
|