|
|
|
import os, struct |
|
import numpy as np |
|
import zlib |
|
import imageio |
|
import cv2 |
|
import png |
|
|
|
COMPRESSION_TYPE_COLOR = {-1:'unknown', 0:'raw', 1:'png', 2:'jpeg'} |
|
COMPRESSION_TYPE_DEPTH = {-1:'unknown', 0:'raw_ushort', 1:'zlib_ushort', 2:'occi_ushort'} |
|
|
|
class RGBDFrame(): |
|
|
|
def load(self, file_handle): |
|
self.camera_to_world = np.asarray(struct.unpack('f'*16, file_handle.read(16*4)), dtype=np.float32).reshape(4, 4) |
|
self.timestamp_color = struct.unpack('Q', file_handle.read(8))[0] |
|
self.timestamp_depth = struct.unpack('Q', file_handle.read(8))[0] |
|
self.color_size_bytes = struct.unpack('Q', file_handle.read(8))[0] |
|
self.depth_size_bytes = struct.unpack('Q', file_handle.read(8))[0] |
|
self.color_data = ''.join(struct.unpack('c'*self.color_size_bytes, file_handle.read(self.color_size_bytes))) |
|
self.depth_data = ''.join(struct.unpack('c'*self.depth_size_bytes, file_handle.read(self.depth_size_bytes))) |
|
|
|
|
|
def decompress_depth(self, compression_type): |
|
if compression_type == 'zlib_ushort': |
|
return self.decompress_depth_zlib() |
|
else: |
|
raise |
|
|
|
|
|
def decompress_depth_zlib(self): |
|
return zlib.decompress(self.depth_data) |
|
|
|
|
|
def decompress_color(self, compression_type): |
|
if compression_type == 'jpeg': |
|
return self.decompress_color_jpeg() |
|
else: |
|
raise |
|
|
|
|
|
def decompress_color_jpeg(self): |
|
return imageio.imread(self.color_data) |
|
|
|
|
|
class SensorData: |
|
|
|
def __init__(self, filename): |
|
self.version = 4 |
|
self.load(filename) |
|
|
|
|
|
def load(self, filename): |
|
with open(filename, 'rb') as f: |
|
version = struct.unpack('I', f.read(4))[0] |
|
assert self.version == version |
|
strlen = struct.unpack('Q', f.read(8))[0] |
|
self.sensor_name = ''.join(struct.unpack('c'*strlen, f.read(strlen))) |
|
self.intrinsic_color = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) |
|
self.extrinsic_color = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) |
|
self.intrinsic_depth = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) |
|
self.extrinsic_depth = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) |
|
self.color_compression_type = COMPRESSION_TYPE_COLOR[struct.unpack('i', f.read(4))[0]] |
|
self.depth_compression_type = COMPRESSION_TYPE_DEPTH[struct.unpack('i', f.read(4))[0]] |
|
self.color_width = struct.unpack('I', f.read(4))[0] |
|
self.color_height = struct.unpack('I', f.read(4))[0] |
|
self.depth_width = struct.unpack('I', f.read(4))[0] |
|
self.depth_height = struct.unpack('I', f.read(4))[0] |
|
self.depth_shift = struct.unpack('f', f.read(4))[0] |
|
num_frames = struct.unpack('Q', f.read(8))[0] |
|
self.frames = [] |
|
for i in range(num_frames): |
|
frame = RGBDFrame() |
|
frame.load(f) |
|
self.frames.append(frame) |
|
|
|
|
|
def export_depth_images(self, output_path, image_size=None, frame_skip=1): |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
print 'exporting', len(self.frames)//frame_skip, ' depth frames to', output_path |
|
for f in range(0, len(self.frames), frame_skip): |
|
depth_data = self.frames[f].decompress_depth(self.depth_compression_type) |
|
depth = np.fromstring(depth_data, dtype=np.uint16).reshape(self.depth_height, self.depth_width) |
|
if image_size is not None: |
|
depth = cv2.resize(depth, (image_size[1], image_size[0]), interpolation=cv2.INTER_NEAREST) |
|
|
|
with open(os.path.join(output_path, str(f) + '.png'), 'wb') as f: |
|
writer = png.Writer(width=depth.shape[1], height=depth.shape[0], bitdepth=16) |
|
depth = depth.reshape(-1, depth.shape[1]).tolist() |
|
writer.write(f, depth) |
|
|
|
def export_color_images(self, output_path, image_size=None, frame_skip=1): |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
print 'exporting', len(self.frames)//frame_skip, 'color frames to', output_path |
|
for f in range(0, len(self.frames), frame_skip): |
|
color = self.frames[f].decompress_color(self.color_compression_type) |
|
if image_size is not None: |
|
color = cv2.resize(color, (image_size[1], image_size[0]), interpolation=cv2.INTER_NEAREST) |
|
imageio.imwrite(os.path.join(output_path, str(f) + '.jpg'), color) |
|
|
|
|
|
def save_mat_to_file(self, matrix, filename): |
|
with open(filename, 'w') as f: |
|
for line in matrix: |
|
np.savetxt(f, line[np.newaxis], fmt='%f') |
|
|
|
|
|
def export_poses(self, output_path, frame_skip=1): |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
print 'exporting', len(self.frames)//frame_skip, 'camera poses to', output_path |
|
for f in range(0, len(self.frames), frame_skip): |
|
self.save_mat_to_file(self.frames[f].camera_to_world, os.path.join(output_path, str(f) + '.txt')) |
|
|
|
|
|
def export_intrinsics(self, output_path): |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
print 'exporting camera intrinsics to', output_path |
|
self.save_mat_to_file(self.intrinsic_color, os.path.join(output_path, 'intrinsic_color.txt')) |
|
self.save_mat_to_file(self.extrinsic_color, os.path.join(output_path, 'extrinsic_color.txt')) |
|
self.save_mat_to_file(self.intrinsic_depth, os.path.join(output_path, 'intrinsic_depth.txt')) |
|
self.save_mat_to_file(self.extrinsic_depth, os.path.join(output_path, 'extrinsic_depth.txt')) |