|
import argparse |
|
|
|
import imagesize |
|
|
|
import numpy as np |
|
|
|
import os |
|
|
|
parser = argparse.ArgumentParser(description="MegaDepth preprocessing script") |
|
|
|
parser.add_argument("--base_path", type=str, required=True, help="path to MegaDepth") |
|
parser.add_argument("--scene_id", type=str, required=True, help="scene ID") |
|
|
|
parser.add_argument( |
|
"--output_path", type=str, required=True, help="path to the output directory" |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
base_path = args.base_path |
|
|
|
if base_path[-1] in ["/", "\\"]: |
|
base_path = base_path[:-1] |
|
scene_id = args.scene_id |
|
|
|
base_depth_path = os.path.join(base_path, "phoenix/S6/zl548/MegaDepth_v1") |
|
base_undistorted_sfm_path = os.path.join(base_path, "Undistorted_SfM") |
|
|
|
undistorted_sparse_path = os.path.join( |
|
base_undistorted_sfm_path, scene_id, "sparse-txt" |
|
) |
|
if not os.path.exists(undistorted_sparse_path): |
|
exit() |
|
|
|
depths_path = os.path.join(base_depth_path, scene_id, "dense0", "depths") |
|
if not os.path.exists(depths_path): |
|
exit() |
|
|
|
images_path = os.path.join(base_undistorted_sfm_path, scene_id, "images") |
|
if not os.path.exists(images_path): |
|
exit() |
|
|
|
|
|
with open(os.path.join(undistorted_sparse_path, "cameras.txt"), "r") as f: |
|
raw = f.readlines()[3:] |
|
|
|
camera_intrinsics = {} |
|
for camera in raw: |
|
camera = camera.split(" ") |
|
camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2:]] |
|
|
|
|
|
with open(os.path.join(undistorted_sparse_path, "points3D.txt"), "r") as f: |
|
raw = f.readlines()[3:] |
|
|
|
points3D = {} |
|
for point3D in raw: |
|
point3D = point3D.split(" ") |
|
points3D[int(point3D[0])] = np.array( |
|
[float(point3D[1]), float(point3D[2]), float(point3D[3])] |
|
) |
|
|
|
|
|
with open(os.path.join(undistorted_sparse_path, "images.txt"), "r") as f: |
|
raw = f.readlines()[4:] |
|
|
|
image_id_to_idx = {} |
|
image_names = [] |
|
raw_pose = [] |
|
camera = [] |
|
points3D_id_to_2D = [] |
|
n_points3D = [] |
|
for idx, (image, points) in enumerate(zip(raw[::2], raw[1::2])): |
|
image = image.split(" ") |
|
points = points.split(" ") |
|
|
|
image_id_to_idx[int(image[0])] = idx |
|
|
|
image_name = image[-1].strip("\n") |
|
image_names.append(image_name) |
|
|
|
raw_pose.append([float(elem) for elem in image[1:-2]]) |
|
camera.append(int(image[-2])) |
|
current_points3D_id_to_2D = {} |
|
for x, y, point3D_id in zip(points[::3], points[1::3], points[2::3]): |
|
if int(point3D_id) == -1: |
|
continue |
|
current_points3D_id_to_2D[int(point3D_id)] = [float(x), float(y)] |
|
points3D_id_to_2D.append(current_points3D_id_to_2D) |
|
n_points3D.append(len(current_points3D_id_to_2D)) |
|
n_images = len(image_names) |
|
|
|
|
|
image_paths = [] |
|
depth_paths = [] |
|
for image_name in image_names: |
|
image_path = os.path.join(images_path, image_name) |
|
|
|
|
|
depth_path = os.path.join(depths_path, "%s.h5" % os.path.splitext(image_name)[0]) |
|
|
|
if os.path.exists(depth_path): |
|
|
|
file_size = os.stat(depth_path).st_size |
|
|
|
if file_size < 100 * 1024: |
|
depth_paths.append(None) |
|
image_paths.append(None) |
|
else: |
|
depth_paths.append(depth_path[len(base_path) + 1 :]) |
|
image_paths.append(image_path[len(base_path) + 1 :]) |
|
else: |
|
depth_paths.append(None) |
|
image_paths.append(None) |
|
|
|
|
|
intrinsics = [] |
|
poses = [] |
|
principal_axis = [] |
|
points3D_id_to_ndepth = [] |
|
for idx, image_name in enumerate(image_names): |
|
if image_paths[idx] is None: |
|
intrinsics.append(None) |
|
poses.append(None) |
|
principal_axis.append([0, 0, 0]) |
|
points3D_id_to_ndepth.append({}) |
|
continue |
|
image_intrinsics = camera_intrinsics[camera[idx]] |
|
K = np.zeros([3, 3]) |
|
K[0, 0] = image_intrinsics[2] |
|
K[0, 2] = image_intrinsics[4] |
|
K[1, 1] = image_intrinsics[3] |
|
K[1, 2] = image_intrinsics[5] |
|
K[2, 2] = 1 |
|
intrinsics.append(K) |
|
|
|
image_pose = raw_pose[idx] |
|
qvec = image_pose[:4] |
|
qvec = qvec / np.linalg.norm(qvec) |
|
w, x, y, z = qvec |
|
R = np.array( |
|
[ |
|
[1 - 2 * y * y - 2 * z * z, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w], |
|
[2 * x * y + 2 * z * w, 1 - 2 * x * x - 2 * z * z, 2 * y * z - 2 * x * w], |
|
[2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y], |
|
] |
|
) |
|
principal_axis.append(R[2, :]) |
|
t = image_pose[4:7] |
|
|
|
current_pose = np.zeros([4, 4]) |
|
current_pose[:3, :3] = R |
|
current_pose[:3, 3] = t |
|
current_pose[3, 3] = 1 |
|
|
|
|
|
|
|
|
|
|
|
poses.append(current_pose) |
|
|
|
current_points3D_id_to_ndepth = {} |
|
for point3D_id in points3D_id_to_2D[idx].keys(): |
|
p3d = points3D[point3D_id] |
|
current_points3D_id_to_ndepth[point3D_id] = (np.dot(R[2, :], p3d) + t[2]) / ( |
|
0.5 * (K[0, 0] + K[1, 1]) |
|
) |
|
points3D_id_to_ndepth.append(current_points3D_id_to_ndepth) |
|
principal_axis = np.array(principal_axis) |
|
angles = np.rad2deg( |
|
np.arccos(np.clip(np.dot(principal_axis, np.transpose(principal_axis)), -1, 1)) |
|
) |
|
|
|
|
|
overlap_matrix = np.full([n_images, n_images], -1.0) |
|
scale_ratio_matrix = np.full([n_images, n_images], -1.0) |
|
for idx1 in range(n_images): |
|
if image_paths[idx1] is None or depth_paths[idx1] is None: |
|
continue |
|
for idx2 in range(idx1 + 1, n_images): |
|
if image_paths[idx2] is None or depth_paths[idx2] is None: |
|
continue |
|
matches = points3D_id_to_2D[idx1].keys() & points3D_id_to_2D[idx2].keys() |
|
min_num_points3D = min( |
|
len(points3D_id_to_2D[idx1]), len(points3D_id_to_2D[idx2]) |
|
) |
|
overlap_matrix[idx1, idx2] = len(matches) / len( |
|
points3D_id_to_2D[idx1] |
|
) |
|
overlap_matrix[idx2, idx1] = len(matches) / len( |
|
points3D_id_to_2D[idx2] |
|
) |
|
if len(matches) == 0: |
|
continue |
|
points3D_id_to_ndepth1 = points3D_id_to_ndepth[idx1] |
|
points3D_id_to_ndepth2 = points3D_id_to_ndepth[idx2] |
|
nd1 = np.array([points3D_id_to_ndepth1[match] for match in matches]) |
|
nd2 = np.array([points3D_id_to_ndepth2[match] for match in matches]) |
|
min_scale_ratio = np.min(np.maximum(nd1 / nd2, nd2 / nd1)) |
|
scale_ratio_matrix[idx1, idx2] = min_scale_ratio |
|
scale_ratio_matrix[idx2, idx1] = min_scale_ratio |
|
|
|
np.savez( |
|
os.path.join(args.output_path, "%s.npz" % scene_id), |
|
image_paths=image_paths, |
|
depth_paths=depth_paths, |
|
intrinsics=intrinsics, |
|
poses=poses, |
|
overlap_matrix=overlap_matrix, |
|
scale_ratio_matrix=scale_ratio_matrix, |
|
angles=angles, |
|
n_points3D=n_points3D, |
|
points3D_id_to_2D=points3D_id_to_2D, |
|
points3D_id_to_ndepth=points3D_id_to_ndepth, |
|
) |
|
|