|
|
|
|
|
|
|
|
|
import random |
|
from math import pi |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
|
|
from lanet_utils import image_grid |
|
|
|
|
|
def filter_dict(dict, keywords): |
|
""" |
|
Returns only the keywords that are part of a dictionary |
|
|
|
Parameters |
|
---------- |
|
dictionary : dict |
|
Dictionary for filtering |
|
keywords : list of str |
|
Keywords that will be filtered |
|
|
|
Returns |
|
------- |
|
keywords : list of str |
|
List containing the keywords that are keys in dictionary |
|
""" |
|
return [key for key in keywords if key in dict] |
|
|
|
|
|
def resize_sample(sample, image_shape, image_interpolation=Image.ANTIALIAS): |
|
""" |
|
Resizes a sample, which contains an input image. |
|
|
|
Parameters |
|
---------- |
|
sample : dict |
|
Dictionary with sample values (output from a dataset's __getitem__ method) |
|
shape : tuple (H,W) |
|
Output shape |
|
image_interpolation : int |
|
Interpolation mode |
|
|
|
Returns |
|
------- |
|
sample : dict |
|
Resized sample |
|
""" |
|
|
|
image_transform = transforms.Resize(image_shape, interpolation=image_interpolation) |
|
sample["image"] = image_transform(sample["image"]) |
|
return sample |
|
|
|
|
|
def spatial_augment_sample(sample): |
|
"""Apply spatial augmentation to an image (flipping and random affine transformation).""" |
|
augment_image = transforms.Compose( |
|
[ |
|
transforms.RandomVerticalFlip(p=0.5), |
|
transforms.RandomHorizontalFlip(p=0.5), |
|
transforms.RandomAffine(15, translate=(0.1, 0.1), scale=(0.9, 1.1)), |
|
] |
|
) |
|
sample["image"] = augment_image(sample["image"]) |
|
|
|
return sample |
|
|
|
|
|
def unnormalize_image(tensor, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)): |
|
"""Counterpart method of torchvision.transforms.Normalize.""" |
|
for t, m, s in zip(tensor, mean, std): |
|
t.div_(1 / s).sub_(-m) |
|
return tensor |
|
|
|
|
|
def sample_homography( |
|
shape, |
|
perspective=True, |
|
scaling=True, |
|
rotation=True, |
|
translation=True, |
|
n_scales=100, |
|
n_angles=100, |
|
scaling_amplitude=0.1, |
|
perspective_amplitude=0.4, |
|
patch_ratio=0.8, |
|
max_angle=pi / 4, |
|
): |
|
"""Sample a random homography that includes perspective, scale, translation and rotation operations.""" |
|
|
|
width = float(shape[1]) |
|
hw_ratio = float(shape[0]) / float(shape[1]) |
|
|
|
pts1 = np.stack([[-1.0, -1.0], [-1.0, 1.0], [1.0, -1.0], [1.0, 1.0]], axis=0) |
|
pts2 = pts1.copy() * patch_ratio |
|
pts2[:, 1] *= hw_ratio |
|
|
|
if perspective: |
|
|
|
perspective_amplitude_x = np.random.normal(0.0, perspective_amplitude / 2, (2)) |
|
perspective_amplitude_y = np.random.normal( |
|
0.0, hw_ratio * perspective_amplitude / 2, (2) |
|
) |
|
|
|
perspective_amplitude_x = np.clip( |
|
perspective_amplitude_x, |
|
-perspective_amplitude / 2, |
|
perspective_amplitude / 2, |
|
) |
|
perspective_amplitude_y = np.clip( |
|
perspective_amplitude_y, |
|
hw_ratio * -perspective_amplitude / 2, |
|
hw_ratio * perspective_amplitude / 2, |
|
) |
|
|
|
pts2[0, 0] -= perspective_amplitude_x[1] |
|
pts2[0, 1] -= perspective_amplitude_y[1] |
|
|
|
pts2[1, 0] -= perspective_amplitude_x[0] |
|
pts2[1, 1] += perspective_amplitude_y[1] |
|
|
|
pts2[2, 0] += perspective_amplitude_x[1] |
|
pts2[2, 1] -= perspective_amplitude_y[0] |
|
|
|
pts2[3, 0] += perspective_amplitude_x[0] |
|
pts2[3, 1] += perspective_amplitude_y[0] |
|
|
|
if scaling: |
|
|
|
random_scales = np.random.normal(1, scaling_amplitude / 2, (n_scales)) |
|
random_scales = np.clip( |
|
random_scales, 1 - scaling_amplitude / 2, 1 + scaling_amplitude / 2 |
|
) |
|
|
|
scales = np.concatenate([[1.0], random_scales], 0) |
|
center = np.mean(pts2, axis=0, keepdims=True) |
|
scaled = ( |
|
np.expand_dims(pts2 - center, axis=0) |
|
* np.expand_dims(np.expand_dims(scales, 1), 1) |
|
+ center |
|
) |
|
valid = np.arange(n_scales) |
|
idx = valid[np.random.randint(valid.shape[0])] |
|
pts2 = scaled[idx] |
|
|
|
if translation: |
|
t_min, t_max = np.min(pts2 - [-1.0, -hw_ratio], axis=0), np.min( |
|
[1.0, hw_ratio] - pts2, axis=0 |
|
) |
|
pts2 += np.expand_dims( |
|
np.stack( |
|
[ |
|
np.random.uniform(-t_min[0], t_max[0]), |
|
np.random.uniform(-t_min[1], t_max[1]), |
|
] |
|
), |
|
axis=0, |
|
) |
|
|
|
if rotation: |
|
angles = np.linspace(-max_angle, max_angle, n_angles) |
|
angles = np.concatenate([[0.0], angles], axis=0) |
|
|
|
center = np.mean(pts2, axis=0, keepdims=True) |
|
rot_mat = np.reshape( |
|
np.stack( |
|
[np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)], |
|
axis=1, |
|
), |
|
[-1, 2, 2], |
|
) |
|
rotated = ( |
|
np.matmul( |
|
np.tile(np.expand_dims(pts2 - center, axis=0), [n_angles + 1, 1, 1]), |
|
rot_mat, |
|
) |
|
+ center |
|
) |
|
|
|
valid = np.where( |
|
np.all( |
|
(rotated >= [-1.0, -hw_ratio]) & (rotated < [1.0, hw_ratio]), |
|
axis=(1, 2), |
|
) |
|
)[0] |
|
|
|
idx = valid[np.random.randint(valid.shape[0])] |
|
pts2 = rotated[idx] |
|
|
|
pts2[:, 1] /= hw_ratio |
|
|
|
def ax(p, q): |
|
return [p[0], p[1], 1, 0, 0, 0, -p[0] * q[0], -p[1] * q[0]] |
|
|
|
def ay(p, q): |
|
return [0, 0, 0, p[0], p[1], 1, -p[0] * q[1], -p[1] * q[1]] |
|
|
|
a_mat = np.stack([f(pts1[i], pts2[i]) for i in range(4) for f in (ax, ay)], axis=0) |
|
p_mat = np.transpose( |
|
np.stack([[pts2[i][j] for i in range(4) for j in range(2)]], axis=0) |
|
) |
|
|
|
homography = np.matmul(np.linalg.pinv(a_mat), p_mat).squeeze() |
|
homography = np.concatenate([homography, [1.0]]).reshape(3, 3) |
|
return homography |
|
|
|
|
|
def warp_homography(sources, homography): |
|
"""Warp features given a homography |
|
|
|
Parameters |
|
---------- |
|
sources: torch.tensor (1,H,W,2) |
|
Keypoint vector. |
|
homography: torch.Tensor (3,3) |
|
Homography. |
|
|
|
Returns |
|
------- |
|
warped_sources: torch.tensor (1,H,W,2) |
|
Warped feature vector. |
|
""" |
|
_, H, W, _ = sources.shape |
|
warped_sources = sources.clone().squeeze() |
|
warped_sources = warped_sources.view(-1, 2) |
|
warped_sources = torch.addmm( |
|
homography[:, 2], warped_sources, homography[:, :2].t() |
|
) |
|
warped_sources.mul_(1 / warped_sources[:, 2].unsqueeze(1)) |
|
warped_sources = warped_sources[:, :2].contiguous().view(1, H, W, 2) |
|
return warped_sources |
|
|
|
|
|
def add_noise(img, mode="gaussian", percent=0.02): |
|
"""Add image noise |
|
|
|
Parameters |
|
---------- |
|
image : np.array |
|
Input image |
|
mode: str |
|
Type of noise, from ['gaussian','salt','pepper','s&p'] |
|
percent: float |
|
Percentage image points to add noise to. |
|
Returns |
|
------- |
|
image : np.array |
|
Image plus noise. |
|
""" |
|
original_dtype = img.dtype |
|
if mode == "gaussian": |
|
mean = 0 |
|
var = 0.1 |
|
sigma = var * 0.5 |
|
|
|
if img.ndim == 2: |
|
h, w = img.shape |
|
gauss = np.random.normal(mean, sigma, (h, w)) |
|
else: |
|
h, w, c = img.shape |
|
gauss = np.random.normal(mean, sigma, (h, w, c)) |
|
|
|
if img.dtype not in [np.float32, np.float64]: |
|
gauss = gauss * np.iinfo(img.dtype).max |
|
img = np.clip(img.astype(np.float) + gauss, 0, np.iinfo(img.dtype).max) |
|
else: |
|
img = np.clip(img.astype(np.float) + gauss, 0, 1) |
|
|
|
elif mode == "salt": |
|
print(img.dtype) |
|
s_vs_p = 1 |
|
num_salt = np.ceil(percent * img.size * s_vs_p) |
|
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape]) |
|
|
|
if img.dtype in [np.float32, np.float64]: |
|
img[coords] = 1 |
|
else: |
|
img[coords] = np.iinfo(img.dtype).max |
|
print(img.dtype) |
|
elif mode == "pepper": |
|
s_vs_p = 0 |
|
num_pepper = np.ceil(percent * img.size * (1.0 - s_vs_p)) |
|
coords = tuple( |
|
[np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape] |
|
) |
|
img[coords] = 0 |
|
|
|
elif mode == "s&p": |
|
s_vs_p = 0.5 |
|
|
|
|
|
num_salt = np.ceil(percent * img.size * s_vs_p) |
|
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape]) |
|
if img.dtype in [np.float32, np.float64]: |
|
img[coords] = 1 |
|
else: |
|
img[coords] = np.iinfo(img.dtype).max |
|
|
|
|
|
num_pepper = np.ceil(percent * img.size * (1.0 - s_vs_p)) |
|
coords = tuple( |
|
[np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape] |
|
) |
|
img[coords] = 0 |
|
else: |
|
raise ValueError("not support mode for {}".format(mode)) |
|
|
|
noisy = img.astype(original_dtype) |
|
return noisy |
|
|
|
|
|
def non_spatial_augmentation( |
|
img_warp_ori, jitter_paramters, color_order=[0, 1, 2], to_gray=False |
|
): |
|
"""Apply non-spatial augmentation to an image (jittering, color swap, convert to gray scale, Gaussian blur).""" |
|
|
|
brightness, contrast, saturation, hue = jitter_paramters |
|
color_augmentation = transforms.ColorJitter(brightness, contrast, saturation, hue) |
|
""" |
|
augment_image = color_augmentation.get_params(brightness=[max(0, 1 - brightness), 1 + brightness], |
|
contrast=[max(0, 1 - contrast), 1 + contrast], |
|
saturation=[max(0, 1 - saturation), 1 + saturation], |
|
hue=[-hue, hue]) |
|
""" |
|
|
|
B = img_warp_ori.shape[0] |
|
img_warp = [] |
|
kernel_sizes = [0, 1, 3, 5] |
|
for b in range(B): |
|
img_warp_sub = img_warp_ori[b].cpu() |
|
img_warp_sub = torchvision.transforms.functional.to_pil_image(img_warp_sub) |
|
|
|
img_warp_sub_np = np.array(img_warp_sub) |
|
img_warp_sub_np = img_warp_sub_np[:, :, color_order] |
|
|
|
if np.random.rand() > 0.5: |
|
img_warp_sub_np = add_noise(img_warp_sub_np) |
|
|
|
rand_index = np.random.randint(4) |
|
kernel_size = kernel_sizes[rand_index] |
|
if kernel_size > 0: |
|
img_warp_sub_np = cv2.GaussianBlur( |
|
img_warp_sub_np, (kernel_size, kernel_size), sigmaX=0 |
|
) |
|
|
|
if to_gray: |
|
img_warp_sub_np = cv2.cvtColor(img_warp_sub_np, cv2.COLOR_RGB2GRAY) |
|
img_warp_sub_np = cv2.cvtColor(img_warp_sub_np, cv2.COLOR_GRAY2RGB) |
|
|
|
img_warp_sub = Image.fromarray(img_warp_sub_np) |
|
img_warp_sub = color_augmentation(img_warp_sub) |
|
|
|
img_warp_sub = torchvision.transforms.functional.to_tensor(img_warp_sub).to( |
|
img_warp_ori.device |
|
) |
|
|
|
img_warp.append(img_warp_sub) |
|
|
|
img_warp = torch.stack(img_warp, dim=0) |
|
return img_warp |
|
|
|
|
|
def ha_augment_sample( |
|
data, |
|
jitter_paramters=[0.5, 0.5, 0.2, 0.05], |
|
patch_ratio=0.7, |
|
scaling_amplitude=0.2, |
|
max_angle=pi / 4, |
|
): |
|
"""Apply Homography Adaptation image augmentation.""" |
|
input_img = data["image"].unsqueeze(0) |
|
_, _, H, W = input_img.shape |
|
device = input_img.device |
|
|
|
homography = ( |
|
torch.from_numpy( |
|
sample_homography( |
|
[H, W], |
|
patch_ratio=patch_ratio, |
|
scaling_amplitude=scaling_amplitude, |
|
max_angle=max_angle, |
|
) |
|
) |
|
.float() |
|
.to(device) |
|
) |
|
homography_inv = torch.inverse(homography) |
|
|
|
source = ( |
|
image_grid( |
|
1, H, W, dtype=input_img.dtype, device=device, ones=False, normalized=True |
|
) |
|
.clone() |
|
.permute(0, 2, 3, 1) |
|
) |
|
|
|
target_warped = warp_homography(source, homography) |
|
img_warp = torch.nn.functional.grid_sample(input_img, target_warped) |
|
|
|
color_order = [0, 1, 2] |
|
if np.random.rand() > 0.5: |
|
random.shuffle(color_order) |
|
|
|
to_gray = False |
|
if np.random.rand() > 0.5: |
|
to_gray = True |
|
|
|
input_img = non_spatial_augmentation( |
|
input_img, |
|
jitter_paramters=jitter_paramters, |
|
color_order=color_order, |
|
to_gray=to_gray, |
|
) |
|
img_warp = non_spatial_augmentation( |
|
img_warp, |
|
jitter_paramters=jitter_paramters, |
|
color_order=color_order, |
|
to_gray=to_gray, |
|
) |
|
|
|
data["image"] = input_img.squeeze() |
|
data["image_aug"] = img_warp.squeeze() |
|
data["homography"] = homography |
|
data["homography_inv"] = homography_inv |
|
return data |
|
|