|
from PIL import Image |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
from augmentations import ha_augment_sample, resize_sample, spatial_augment_sample |
|
from lanet_utils import to_tensor_sample |
|
|
|
|
|
def image_transforms(shape, jittering): |
|
def train_transforms(sample): |
|
sample = resize_sample(sample, image_shape=shape) |
|
sample = spatial_augment_sample(sample) |
|
sample = to_tensor_sample(sample) |
|
sample = ha_augment_sample(sample, jitter_paramters=jittering) |
|
return sample |
|
|
|
return {"train": train_transforms} |
|
|
|
|
|
class GetData(Dataset): |
|
def __init__(self, config, transforms=None): |
|
""" |
|
Get the list containing all images and labels. |
|
""" |
|
datafile = open(config.train_txt, "r") |
|
lines = datafile.readlines() |
|
|
|
dataset = [] |
|
for line in lines: |
|
line = line.rstrip() |
|
data = line.split() |
|
dataset.append(data[0]) |
|
|
|
self.config = config |
|
self.dataset = dataset |
|
self.root = config.train_root |
|
|
|
self.transforms = transforms |
|
|
|
def __getitem__(self, index): |
|
""" |
|
Return image'data and its label. |
|
""" |
|
img_path = self.dataset[index] |
|
img_file = self.root + img_path |
|
img = Image.open(img_file) |
|
|
|
|
|
if img.mode == "L": |
|
img_new = Image.new("RGB", img.size) |
|
img_new.paste(img) |
|
sample = {"image": img_new, "idx": index} |
|
else: |
|
sample = {"image": img, "idx": index} |
|
|
|
if self.transforms: |
|
sample = self.transforms(sample) |
|
|
|
return sample |
|
|
|
def __len__(self): |
|
""" |
|
Return the number of all data. |
|
""" |
|
return len(self.dataset) |
|
|
|
|
|
def get_data_loader( |
|
config, |
|
transforms=None, |
|
sampler=None, |
|
drop_last=True, |
|
): |
|
""" |
|
Return batch data for training. |
|
""" |
|
transforms = image_transforms(shape=config.image_shape, jittering=config.jittering) |
|
dataset = GetData(config, transforms=transforms["train"]) |
|
|
|
train_loader = DataLoader( |
|
dataset, |
|
batch_size=config.batch_size, |
|
shuffle=config.shuffle, |
|
sampler=sampler, |
|
num_workers=config.num_workers, |
|
pin_memory=config.pin_memory, |
|
drop_last=drop_last, |
|
) |
|
|
|
return train_loader |
|
|