|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as tvf |
|
|
|
from .modules import InterestPointModule, CorrespondenceModule |
|
|
|
|
|
def warp_homography_batch(sources, homographies): |
|
""" |
|
Batch warp keypoints given homographies. From https://github.com/TRI-ML/KP2D. |
|
|
|
Parameters |
|
---------- |
|
sources: torch.Tensor (B,H,W,C) |
|
Keypoints vector. |
|
homographies: torch.Tensor (B,3,3) |
|
Homographies. |
|
|
|
Returns |
|
------- |
|
warped_sources: torch.Tensor (B,H,W,C) |
|
Warped keypoints vector. |
|
""" |
|
B, H, W, _ = sources.shape |
|
warped_sources = [] |
|
for b in range(B): |
|
source = sources[b].clone() |
|
source = source.view(-1, 2) |
|
""" |
|
[X, [M11, M12, M13 [x, M11*x + M12*y + M13 [M11, M12 [M13, |
|
Y, = M21, M22, M23 * y, = M21*x + M22*y + M23 = [x, y] * M21, M22 + M23, |
|
Z] M31, M32, M33] 1] M31*x + M32*y + M33 M31, M32].T M33] |
|
""" |
|
source = torch.addmm(homographies[b, :, 2], source, homographies[b, :, :2].t()) |
|
source.mul_(1 / source[:, 2].unsqueeze(1)) |
|
source = source[:, :2].contiguous().view(H, W, 2) |
|
warped_sources.append(source) |
|
return torch.stack(warped_sources, dim=0) |
|
|
|
|
|
class PointModel(nn.Module): |
|
def __init__(self, is_test=False): |
|
super(PointModel, self).__init__() |
|
self.is_test = is_test |
|
self.interestpoint_module = InterestPointModule(is_test=self.is_test) |
|
self.correspondence_module = CorrespondenceModule() |
|
self.norm_rgb = tvf.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
def forward(self, *args): |
|
img = args[0] |
|
img = self.norm_rgb(img) |
|
score, coord, desc = self.interestpoint_module(img) |
|
return score, coord, desc |
|
|